
UNIVERSITY OF CALIFORNIA

Los Angeles

Data-Based Monitoring and Fault-Tolerant Control of Nonlinear Processes

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Chemical Engineering

by

David Chilin

2012





ABSTRACT OF THE DISSERTATION

Data-Based Monitoring and Fault-Tolerant Control of Nonlinear Processes

by

David Chilin

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2012

Professor Panagiotis D. Christofides, Chair

Fault-tolerant control is an essential component in modern process industries as abnormal sit-

uations account for over $20 billion in lost annual revenue in the US alone. Traditionally, control

systems rely on centralized control architectures utilizing dedicated wired links to measurement

sensors and control actuators to operate a plant at desired conditions and a separate monitor-

ing system for detecting faults. While this paradigm to process operations and control has been

successful, modern chemical plants that rely on highly automated processes to maintain robust op-

erations and efficient production are vulnerable to abnormal situations like, for example, actuator

faults. Loss of control in a chemical process can lead to the waste of raw materials and energy

resources, as well as downtime and production losses but most importantly it may lead to personnel

injury or death and/or environmental hazard. This issue has prompted significant research efforts

in the integration and application of fault-tolerant control to existing legacy control systems. This

dissertation will present a paradigm shift to the existing approach of designing control systems and

monitoring systems in that it proposes to design distributed control systems that are stabilizing,

robust and optimal, and whose design leads to closed-loop system structures that facilitate fault

isolation with the flexibility to not only avert disaster in the case of an abnormal situation but

maintain optimal plant operation. To present our method of fault-tolerant control, we will focus

on a broad class of non-linear process systems subject to disturbances and persistent control ac-

tuator faults. In general terms, the method includes the design of distributed model predictive

ii



control laws combined with a fault-detection and isolation approach based on process models and

fault-free data that leads to successful detection and isolation of an actuator fault. After isolation

of an actuator fault, the fault-tolerant control system estimates the fault magnitude, calculates a

new optimal operating point, and ultimately reconfigures the distributed model predictive control

system to maintain stability of the process in an optimal manner. Throughout the thesis, detailed

examples of large-scale chemical process systems are used to demonstrate the approach.
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Chapter 1

Introduction

1.1 Background

World markets are becoming increasingly competitive, such that manufacturers are driven to pur-

sue every bit of performance gain from current operations in order to maintain competitiveness. In

the pursuit of this ultimate performance, manufactures are increasingly relying on advanced pro-

cess control systems. With advances constantly being made in computational capabilities, model

predictive control (MPC) has emerged as a reasonable and potentially profitable solution to achieve

optimal process operation and control. MPC lends itself well as an overlying layer that can be im-

plemented on top of existing classical plant control systems and does well to handle input and state

constraints. As the complexity of manufacturing plants has increased, cooperative, distributed

MPC architectures have emerged that also deal well with plant modernization that may include

sensor and actuator networks that may be implemented using wireless or wired networks. One of

the largest pitfalls for closed-loop process performance are abnormal situations which account for

at least $20 billion in lost revenue annually in the U.S. alone. In this context, an added advantage

of MPC is the ability to handle constraints such that when combined with fault tolerant control

strategies introduces flexibility and optimization that can not only avert disaster in the case of an

abnormal situation but can maintain optimal plant operation.

Traditionally, control systems rely on centralized control architectures utilizing dedicated wired

links to measurement sensors and control actuators to regulate appropriate process variables at de-

1



sired values. While this paradigm to process control has been successful, it is limited in the number

of process state variables, manipulated inputs and measurements in a chemical plant because the

computational time needed to solve a centralized control problem may increase significantly and

may impede the ability of the centralized control systems (particularly when nonlinear constrained

optimization-based control systems like MPC are used) to carry out real-time calculations within

the limits set by process dynamics and operating conditions. One feasible alternative to overcome

this problem is to utilize cooperative, distributed control architectures in which the manipulated

inputs are computed by solving more than one control (optimization) problems in separate pro-

cessors in a coordinated fashion. Cooperative, distributed control systems can also take advantage

of additional sensing/actuation capabilities and network accessible data to dramatically improve

process performance and deal with abnormal situations (see [55, 7] for a series of papers and re-

ports calling for attention to the broad issue of distributed decision making/control in the context

of chemical plants).

MPC is a natural control framework to deal with the design of cooperative, distributed con-

trol systems because of its ability to handle input and state constraints, and also because it can

compensate for the actions of other actuators in computing the control response of a given set of

control inputs in real-time. With respect to available results in this direction, several distributed

MPC (DMPC) methods have been proposed in the literature that deal with the coordination of

separate MPC controllers that communicate in order to obtain optimal input trajectories in a dis-

tributed manner; see [3, 41, 44] for reviews of results in this area. More specifically, in [12], the

problem of distributed control of dynamically coupled nonlinear systems that are subject to decou-

pled constraints was considered. In [42, 18], the effect of the coupling was modeled as a bounded

disturbance compensated with a robust MPC formulation. In [52], it was proven that through the

use of multiple communications between distributed controllers and the use of system-wide control

objective functions, stability of the closed-loop system can be guaranteed. In [19], DMPC of de-

coupled systems (a class of systems relevant to the context of multi-agents systems) was studied.

In [29], an MPC algorithm was proposed for the case where the nonlinear system is discrete-time

and no information exchange exist between the local controllers, and in [40], the MPC for nonlinear

systems was studied from an input-to-state stability point of view. A game theory based DMPC

scheme for constrained linear systems was proposed in [28].
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In a previous work [25], a DMPC architecture with one-directional communication for nonlin-

ear process systems was proposed. In this architecture, two separate MPC algorithms designed via

Lyapunov-based MPC (LMPC) were considered, in which one LMPC was used to guarantee the

stability of the closed-loop system and the other LMPC was used to improve the closed-loop per-

formance. In [26], the design of DMPC architectures for systems with asynchronous and delayed

measurements was also considered. In a recent work [24], the DMPC architecture developed in

[25] was extended to include multiple distributed controllers and the requirement that one of the

distributed controllers should be able to stabilize the closed-loop system was relaxed. In the new

DMPC architecture proposed in [24], there are several distributed controllers, where individually

they can not stabilize the closed-loop system, but cooperatively can achieve closed-loop stability

and a desired level of closed-loop performance. The above results deal with the design of DMPC

systems and do not address the problems of monitoring and reconfiguration of DMPC in the event

of actuator faults.

On the other hand, the occurrence of faults in chemical processes poses a number of challenges

in process monitoring and fault-tolerant control. Specifically, the problem of using fundamental

process models for the purpose of detecting faults has been studied extensively in the context

of linear systems [14, 15, 57, 30]; and also, some existential results in the context of nonlinear

systems have been derived [10, 11]. The model-based approach to fault detection relies on the

use of fundamental models for the construction of residuals, that capture some measure of the

difference between normal and ‘faulty’ dynamics, to achieve fault detection and isolation. Fault-

tolerant control has been an active area of research primarily within the context of aerospace control

engineering (see, e.g., [37]). Over the last ten years, our group has initiated an effort of FTC on

nonlinear processes by trying to bring together the disconnected fields of process fault-diagnosis

and nonlinear process control. We have looked at both actuator [32] and sensor [33] faults and

their impact and handling in the context of chemical process control. Despite this progress, there

are no results on monitoring and reconfiguration of cooperative, distributed control systems.
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1.2 Thesis objectives and structure

The objective of this dissertation is to present novel methods of monitoring and reconfiguration of

distributed model predictive control systems applied to general nonlinear processes in the event of

control actuator faults. Specifically, we consider nonlinear systems controlled with a cooperative,

distributed control scheme in which several Lyapunov-based model predictive controllers manipulate

different sets of control inputs and coordinate their actions to achieve the desired closed-loop

stability and performance specifications. To deal with control actuator faults which may reduce

the ability of the distributed control system to stabilize the process, we design a model-based

fault detection and isolation and fault-tolerant control system. The main concepts behind fault-

tolerant control consist of detecting a fault, localizing the source of the fault, and using logic-based

switching between different control configurations, each of which contains multiple control laws and

different sets of manipulated inputs, to provide different regions of closed-loop stability. A detailed

mathematical analysis is carried out to determine precise conditions for the stabilizability of the

FDI and FTC systems.

The thesis is organized as follows: Chapter 2 presents the basic framework for fault detection,

isolation and fault-tolerant control which the other chapters expand on. Chapter 3 introduces an

extension of the FDIFTC system to address a larger range of faults. The effectiveness of FDI and

FTC systems for monitoring and reconfiguration of DMPC systems applied to a nonlinear chemical

process in the presence of actuator faults is further demonstrated in a more practical setting in

chapter 4. Chapter 5 takes the FDIFTC methodologies presented in previous chapters and adapts

them to address the problem of monitoring and retuning of low-level PID control loops.
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Chapter 2

Detection, Isolation and Handling of

Actuator Faults in Distributed Model

Predictive Control Systems

2.1 Introduction

The focus of this chapter is on the development of FDI and FTC systems for the monitoring

and reconfiguration of DMPC systems applied to general nonlinear processes in the presence of

control actuator faults. Specifically, we consider a DMPC system in which two distributed LMPC

controllers manipulate two different sets of control inputs and coordinate their actions to achieve

closed-loop stability and performance specifications. We first design a model-based FDI system

which effectively detects and isolates actuator faults; and then based on the assumption that there

exists a backup control configuration which is able to stabilize the closed-loop system within the

DMPC system, we develop FTC switching rules to handle faults in the actuators of the distributed

control system to minimize closed-loop system performance degradation. Sufficient conditions

for the stabilizability of the FDI and FTC system are obtained based on a detailed mathematical

analysis. The proposed design is applied to a chemical process example, consisting of two continuous

stirred tank reactors (CSTRs) and a flash tank separator with a recycle stream operated at an

unstable steady state, to demonstrate its applicability and effectiveness.
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2.2 Problem formulation and preliminaries

2.2.1 Class of nonlinear systems

We consider nonlinear process systems described by the following state-space model

ẋ = f(x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2) (2.1)

where x ∈ Rn denotes the set of state variables, u1 ∈ Rm1 and u2 ∈ Rm2 denote two sets of

manipulated inputs, ũ1 ∈ Rm1 and ũ2 ∈ Rm2 denote the unknown fault vectors for u1 and u2,

respectively. We consider that u1 + ũ1 and u2 + ũ2 take values in non-empty convex sets U1 ∈ Rm1

and U2 ∈ Rm2 , respectively. The convex sets U1 and U2 are defined as follows:

U1 = {u1 + ũ1 ∈ Rm1 : |u1 + ũ1| ≤ umax
1 }

U2 = {u2 + ũ2 ∈ Rm2 : |u2 + ũ2| ≤ umax
2 }.

We consider a different fault ũf,j ∈ R, j = 1, . . . ,m1 + m2, for each element of the vector

[ũT1 ũT2 ]
T ∈ Rm1+m2 . Under fault-free operating conditions, we have ũ1 = 0 and ũ2 = 0, and hence,

ũf,j = 0 for all j = 1, . . . ,m1 +m2. When fault j occurs, ũf,j takes a non-zero value. We assume

that f , g1, g2 are locally Lipschitz vector functions and that f(0) = 0. This means that the origin

is an equilibrium point for the fault-free system (ũ1 = 0 and ũ2 = 0 for all t) with u1 = 0 and

u2 = 0. We also assume that the state x of the system is sampled synchronously and continuously

and the time instants where we have measurement samplings are indicated by the time sequence

{tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ is the sampling time.

Remark 2.1. The variable ũf,j associated with the jth element in [uT1 uT2 ]
T can be used to model

different kinds of faults that may occur in an actuator. For example, ũf,j can model a constant

deviation of the control input from its calculated value uj; or it can be a function of the form

ũf,j = −uj+c to model faults in an actuator that keep the output of the actuator constant. We also

note that the approach presented here can be extended to handle actuator faults in DMPC systems

which include multiple controllers.
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2.2.2 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller u1(t) = h(x) which renders the origin

of the fault-free closed-loop system asymptotically stable with u2(t) = 0. This assumption is es-

sentially a standard stabilizability requirement made in all linear/nonlinear control methods and

implies that, in principle, it is not necessary to use the extra input u2 in order to achieve closed-loop

stability. However, one of the main objectives of the distributed control method is to profit from the

extra control effort to improve the closed-loop performance while maintaining the stability prop-

erties achieved by only implementing u1. Using converse Lyapunov theorems [20], this assumption

implies that there exist functions αi(·), i = 1, 2, 3, 4 of class K∗ and a continuous differentiable

Lyapunov function V (x) for the nominal closed-loop system that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
(f(x) + g1(x)h(x)) ≤ −α3(|x|)

|∂V (x)

∂x
| ≤ α4(|x|)

h(x) ∈ U1

(2.2)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the origin. We denote the region Ωρ
† ⊆ D

as the stability region of the closed-loop system under the control u1 = h(x) and u2 = 0. We

also note that: a) in certain applications it is possible to attain global stability under h(x) (i.e.,

D = Rn), b) the construction of V (x) can be readily done using a variety of methods (see [20] for

examples), c) dynamic local controllers, like for example proportional-integral (PI) controllers, can

be used in a straightforward fashion as h(x), and d) while we address here stabilization of x = 0,

the problem of set-point tracking can be readily handled by working with deviation variables with

respect to the desired, non-zero operating point.

By continuity and the local Lipschitz property assumed for the vector fields f , g1 and g2, the

fact that the manipulated inputs u1+ ũ1 and u2+ ũ2 are bounded in convex sets and the continuous

differentiable property of the Lyapunov function V , there exist positive constant M1 and Lx,1 such

∗A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0.
†We use Ωr to denote the set Ωρ := {x ∈ Rn : V (x) ≤ ρ}.
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that

|f(x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2)| ≤ M1 (2.3)

|∂V
∂x

(f(x) + g1(x)u1 + g2(x)u2)−
∂V

∂x
(f(x′) + g1(x

′)u1 + g2(x
′)u2)| ≤ Lx,1|x− x′| (2.4)

for all x, x′ ∈ Ωρ, u1 + ũ1 ∈ U1 and u2 + ũ2 ∈ U2.

2.2.3 DMPC design for fault-free system

Following [25], we design a DMPC architecture to achieve the desired closed-loop system stability

and performance specifications and to reduce the computational burden in the evaluation of the

optimal manipulated inputs. Specifically, for the system of Eq. 2.1, we design two separate LMPC

controllers to compute u1 and u2 and refer to the LMPCs computing the trajectories of u1 and u2 as

LMPC 1 and LMPC 2, respectively. The implementation strategy of the DMPC is as follows: 1) at

each sampling instant tk, both LMPC 1 and LMPC 2 receive the state measurement x(tk) from the

sensors; 2) LMPC 2 evaluates the optimal input trajectory of u2 based on x(tk) and sends the first

step input value to its corresponding actuators and the entire optimal input trajectory to LMPC 1;

3) once LMPC 1 receives the entire optimal input trajectory for u2 from LMPC 2, it evaluates the

future input trajectory of u1 based on the x(tk) and the entire optimal input trajectory of u2; 4)

LMPC 1 sends the first step input value of u1 to its corresponding actuators.

We first discuss the design of LMPC 2. The optimization problem of LMPC 2 depends on

the latest state measurement x(tk), however, LMPC 2 does not have any information about the

value that u1 will take. In order to make a decision, LMPC 2 must assume a trajectory for u1

along the prediction horizon. To this end, the Lyapunov-based controller u1 = h(x) is used. In

order to inherit the stability properties of this controller, u2 must satisfy a stability constraint that

guarantees a given minimum decrease rate of the Lyapunov function V (x). The LMPC 2 is based
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on the following optimization problem:

min
u2∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) + u1(τ)

TRc1u1(τ) + u2(τ)
TRc2u2(τ)]dτ (2.5a)

˙̃x(τ) = f(x̃(τ)) + g1(x̃(τ))u1(τ) + g2(x̃(τ))u2(τ) (2.5b)

u1(τ) = h(x̃(j∆)), ∀ τ ∈ [j∆, (j + 1)∆), j = 0, . . . , N − 1 (2.5c)

x̃(0) = x(tk) (2.5d)

u2(τ) ∈ U2 (2.5e)

∂V (x)

∂x
g2(x(tk))u2(0) ≤ 0. (2.5f)

In the optimization problem of Eq. 2.5, x̃ is the predicted trajectory of the fault-free system with

u2 being the input trajectory computed by LMPC 2 of Eq. 2.5 and u1 being the Lyapunov-based

controller h(x) applied in a sample-and-hold fashion. ∆ is the sampling rate of the controller, Qc,

Rc1 and Rc2 are positive definite weighting matrices and N is the prediction horizon. The optimal

solution to this optimization problem is denoted by u∗2(τ |tk). This information is sent to LMPC 1.

The constraint of Eq. 2.5e defines the constraint on the manipulated input u2 and the stability

constraint of Eq. 2.5f is required to guarantee the closed-loop stability.

Next, we discuss the design of LMPC 1. The optimization problem of LMPC 1 depends on

x(tk) and the decision made by LMPC 2 (i.e., u∗2(τ |tk)). This allows LMPC 1 to compute an

input u1 such that the closed-loop performance is optimized, while guaranteeing that the stability

properties of the Lyapunov-based controller are preserved. Specifically, LMPC 1 is based on the

following optimization problem:

min
u1∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) + u1(τ)

TRc1u1(τ) + u∗2(τ |tk)TRc2u
∗
2(τ |tk)]dτ (2.6a)

˙̃x(τ) = f(x̃(τ)) + g1(x̃(τ))u1(τ) + g2(x̃(τ))u
∗
2(τ |tk) (2.6b)

x̃(0) = x(tk) (2.6c)

u1(τ) ∈ U1 (2.6d)

∂V (x)

∂x
g1(x(tk))u1(0) ≤

∂V (x)

∂x
g1(x(tk))h(x(tk)). (2.6e)
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In the optimization problem of Eq. 2.6, x̃ is the predicted trajectory of the fault-free system

with u2 being the optimal input trajectory u∗2(τ |tk) computed by LMPC 2 and u1 being the input

trajectory computed by LMPC 1 of Eq. 2.6. The optimal solution to this optimization problem is

denoted by u∗1(τ |tk). The constraint of Eq. 2.6d defines the constraint on the manipulated input

u1 and the stability constraint of Eq. 2.6e is also required to guarantee the closed-loop stability.

Once both optimization problems are solved (see [25] for results on the feasibility and stability

of the LMPCs of Eq. 2.5 and 2.6), the manipulated inputs of the DMPC system based on LMPC 1

and LMPC 2 are defined as follows:

uL1 (t|x) = u∗1(t− tk|tk), ∀t ∈ [tk, tk+1)

uL2 (t|x) = u∗2(t− tk|tk), ∀t ∈ [tk, tk+1).

The closed-loop system of Eq. 2.1 under this DMPC scheme with inputs defined by u1 = uL1 and

u2 = uL2 maintains the same stability region Ωρ and asymptotic stability as the Lyapunov-based

control law h [25].

2.2.4 FTC considerations and backup DMPC design

In order to carry out FTC, there must be a backup control configuration for the system under

consideration. The presence of the control action u2 brings extra control flexibility to the closed-loop

system which can be used to carry out FTC. Specifically, we assume that the control input u1 can be

decomposed into two subsets. That is u1 = [uT11 uT12]
T . We further assume that, under continuous

state measurements, there exists a Lyapunov-based control law h2(x) = [h21(x)
T h22(x)

T ]T which

is able to asymptotically stabilize the closed-loop system and satisfies the input constrains on u1

and u2 while controlling only u11 and u2; that is, u11 = h21(x), u12 = 0 and u2 = h22(x).

Using converse Lyapunov theorems, this assumption on h2 implies that there exist functions

α′
i(·), i = 1, 2, 3, 4 of class K and a continuously differentiable Lyapunov function V2(x) for the

fault-free system of Eq. 2.1 with u11 = h21(x), u2 = h22(x) and u12 = 0 that satisfy the following
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inequalities

α′
1(|x|) ≤ V2(x) ≤ α′

2(|x|)
∂V (x)

∂x
(f(x) + g1(x)[h21(x)

T 0T ]T + g2(x)h22(x)) ≤ −α′
3(|x|)

|∂V2(x)

∂x
| ≤ α′

4(|x|)

h21(x) ∈ U1, h22(x) ∈ U2

(2.7)

for all x ∈ D2 ⊆ Rn where D2 is an open neighborhood of the origin. We denote Ω2,γ
‡ ⊆ D2 as the

stability region of the closed-loop fault-free system with u1 = [h21(x)
T 0T ]T and u2 = h22(x).

Similarly there exist positive constants M2 and Lx,2 such that

|f(x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2)| ≤ M2 (2.8)

|∂V2

∂x
(f(x) + g1(x)u1 + g2(x)u2)−

∂V2

∂x
(f(x′) + g1(x

′)u1 + g2(x
′)u2)| ≤ Lx,2|x− x′| (2.9)

for all x, x′ ∈ Ω2,γ , u1 + ũ1 ∈ U1 and u2 + ũ2 ∈ U2.

Based on h2(x), we can design a backup DMPC system to manipulate u11 and u2 to stabilize the

closed-loop system following the results developed in [24]. We still design two LMPC controllers in

this DMPC system. One LMPC is used to manipulated u11 and the other one is used to manipulate

u2. We refer to the LMPC manipulating u11 as the backup LMPC 1 and the LMPC manipulating

u2 as the backup LMPC 2. The implementation strategy of the backup DMPC is the same as the

one used by the DMPC system introduced in Section 2.2.3.

‡We use Ω2,γ to denote the set Ω2,γ := {x ∈ Rn : V2(x) ≤ γ}.
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The backup LMPC 2 optimizes u2 and is designed as follows:

min
u2∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) + u1(τ)

TRc1u1(τ) + u2(τ)
TRc2u2(τ)]dτ (2.10a)

˙̃x(τ) = f(x̃(τ)) + g1(x̃(τ))[u11(τ)
Tu12(τ)

T ]T + g2(x̃(τ))u2(τ) (2.10b)

u11(τ) = h21(x̃(j∆)), ∀ τ ∈ [j∆, (j + 1)∆), j = 0, . . . , N − 1 (2.10c)

u12(τ) = 0 (2.10d)

x̃(0) = x(tk) (2.10e)

u2(τ) ∈ U2 (2.10f)

∂V (x)

∂x
g2(x(tk))u2(0) ≤

∂V (x)

∂x
g2(x(tk))h22(x(tk)). (2.10g)

The solution to the optimization problem of Eq. 2.10 is denoted by ub,∗2 (τ |tk). The backup

LMPC 1 optimizes u11 and is designed as follows:

min
u11∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) + u1(τ)

TRc1u1(τ) + ub,∗2 (τ |tk)TRc2u
b,∗
2 (τ |tk)]dτ (2.11a)

˙̃x(τ) = f(x̃(τ)) + g1(x̃(τ))[u11(τ)
T 0T ]T + g2(x̃(τ))u

b,∗
2 (τ |tk) (2.11b)

x̃(0) = x(tk) (2.11c)

u11(τ) ∈ U1 (2.11d)

∂V (x)

∂x
g1(x(tk))[u11(0)

T 0T ]T ≤ ∂V (x)

∂x
g1(x(tk))[h21(x(tk))

T 0T ]T . (2.11e)

The solution to the optimization problem of Eq. 2.11 is denoted by ub,∗11 (τ |tk). The control

inputs of the closed-loop system under the backup DMPC are defined as follows:

ub11(t|x) = ub,∗11 (t− tk|tk), ∀t ∈ [tk, tk+1)

ub12(t|x) = 0, ∀t

ub2(t|x) = ub,∗2 (t− tk|tk), ∀t ∈ [tk, tk+1).

(2.12)

The fault-free closed-loop system of Eq. 2.1 under the backup DMPC control with inputs defined

by u11 = ub11, u12 = 0 and u2 = ub2 maintains the same stability region Ω2,γ as h2(x) and is

practically stable [24].
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Process

Sensors

x

LMPC 1

u1

LMPC 2

x

u2

Monitoring and FTC

Figure 2.1: Proposed FDI and FTC structure for DMPC.

Remark 2.2. Note that in the DMPC design of Eqs. 2.5-2.6, the main objective of LMPC 1 is to

stabilize the closed-loop system and the main objective of LMPC 2 is to maintain the closed-loop

stability achieved by LMPC 1 and try to improve the closed-loop performance. This DMPC design

has the potential to maintain the closed-loop stability and performance in the face of failing con-

trollers or actuators, for example, a zero input of LMPC 2 does not affect the closed-loop stability.

On the other hand, in the backup DMPC design of Eqs. 2.10-2.11, LMPC 1 and LMPC 2 are both

needed in order to guarantee the closed-loop stability, and this design may be fragile to controller

or actuator failures.

Remark 2.3. The assumption that there exists a Lyapunov-based control law h2 that can stabilize

the closed-loop system by manipulating u11 and u2 implies that when there is a fault in the subset

u12 of u1, we can switch off the actuators associated with u12 and the remaining control actions

(i.e., u11 and u2) can still maintain the closed-loop stability. Please see Section 2.3.2 for further

discussion on this issue.

Remark 2.4. Note that the proposed backup control configuration is one of the many possible

options for FTC; however, under the proposed backup control configuration, stability of the closed-

loop system can be proved. Please see Section 2.3 for the proposed fault-tolerant control methods and

see [34, 32] for more discussion on the relationship between system structure and FTC schemes.

2.3 FDI and FTC strategies

In this section, we look at the closed-loop system under the DMPC control of Eqs. 2.5-2.6 where,

upon detection and isolation of actuator faults, the DMPC control system can be switched off or
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reconfigured to maintain stability of the closed-loop system. The structure of the integrated system

is shown in Fig. 2.1.

2.3.1 FDI system design

We consider control actuator faults that can be detected by an appropriate nonlinear dynamic filter

by observing the evolution of the closed-loop system state. This consideration requires that a fault

in a control actuator influences the evolution of at least some of the states. In order to isolate the

occurrence of a fault, it is further required to assume that the control actuator in question is the

only one influencing a certain set of the system states (i.e., each fault has a unique fault signature).

For more discussions on systems having verifiable isolable structures, please see [34, 36].

The DMPC system of Eqs. 2.5-2.6 is the control configuration for the fault-free system of Eq. 2.1.

We first design an FDI scheme to detect faults in this control system. In this FDI scheme, a filter

is designed for each state and the design of the filter for the pth, p = 1, . . . , n, state in the system

state vector x is as follows [34]:

˙̂xp(t) = fp(Xp) + g1p(Xp)u
L
1 (Xp) + g2p(Xp)u

L
2 (Xp) (2.13)

where x̂p is the filter output for the pth state, fp, g1p and g2p are the pth components of the vector

functions f , g1 and g2, respectively. With a little abuse of notation, we have dropped the time

index in the control functions and denote uL1 (t|x), uL2 (t|x) with uL1 (x), u
L
2 (x), respectively, in order

to simplify the FDI definitions. The state Xp is obtained from both the actual state measurements,

x, and the filter output, x̂p, as follows:

Xp(t) = [x1(t), . . . , xp−1(t), x̂p(t), xp+1(t), . . . , xn(t)]
T .

Note that in the filter of Eq. 2.13, the control inputs uL1 (Xp) and uL2 (Xp) are determined by the

same LMPC 1 of Eq. 2.6 and the LMPC 2 of Eq. 2.5 as applied to the actual process, and are

updated every control sampling time ∆ (i.e., the sampling time instants {tk≥0}).

The states of the FDI filters are initialized at t = 0 to the actual state values; that is, x̂p = xp.

The FDI filters are only initialized at t = 0 such that x̂p(0) = xp(0). The information generated by
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the filters provides a fault-free estimate of the real state at any time t and allows easy detection of

the actual system deviating due to faults. For each state associated with a filter, the FDI residual

can be defined as [34]:

rp(t) = |x̂p(t)− xp(t)|,

with p = 1, . . . , n. The residual rp is computed continuously because x̂p(t) is known for all t and the

state measurement, x, is also available for all t. If no fault occurs, the filter states track the system

states. In this case, the dynamics of the system states and the FDI filter states are identical, so

rp(t) = 0 for all times. When there is a fault in the system, filter residuals affected directly by the

fault will deviate from zero soon after the occurrence of the fault. For more detailed discussion on

the properties of the filters, please see [34].

Note that due to sensor measurement and process noise, the residuals will be nonzero even

without an actuator fault. This necessitates the use of fault detection thresholds so that a fault

is declared only when a residual exceeds a specific threshold value, rp,max. This threshold value

is chosen to avoid false alarms due to process and sensor measurement noise, but should still be

sensitive enough to detect faults in a timely manner so that effective fault-tolerant control can be

performed.

The objective of the FDI scheme is to quickly detect an actuator fault when it occurs, and then

identify which of the m1 + m2 possible different actuator faults (i.e., ũf,j , j = 1, . . . ,m1 + m2)

has occurred. When a fault ũf,j occurs, one or more of the filter residuals will become nonzero.

Once a fault is detected, the monitoring system will declare a fault alarm. In order to isolate

a fault, the system must have an isolable structure in which different faults have different fault

signatures. If a fault is isolated, an FTC system may be used which will send the fault information

and reconfiguration policy to the two distributed controllers as shown in Fig. 2.1.

2.3.2 FTC system design

When an actuator fault is detected and isolated, automated FTC action can be initiated. An FTC

switching rule may be employed to orchestrate the reconfiguration of the control system. This rule

determines which of the backup control loops can be activated, in the event that the main control

loop fails, in order to preserve closed-loop stability. In general, when there is a fault in the control
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system, it is impossible to carry out FTC unless there is another backup control loop. However,

in the distributed control architecture introduced in Section 2.2.3, because of the extra control

flexibility brought into the whole system by u2 (LMPC 2), it is possible in some cases to carry out

FTC when there is a fault in the control system without activating new control actuators.

When there is a fault in the loop of u2, and the fault can be detected and isolated in a reasonable

time frame, it is possible to shut down the control action of u2 and to only use u1 in the control

system. This FTC strategy will maintain the closed-loop stability, however, the performance of the

closed-loop system may degrade to some extent. When the loop of u2 is shut down, in the DMPC

scheme of Eqs. 2.5-2.6, only LMPC 1 is evaluated each sampling time, LMPC 1 does not have to be

modified and does not wait for the information sent by LMPC 2. In this case, the input trajectory

of LMPC 2 is replaced by a zero trajectory (i.e., u∗2(τ |x(tk)) = 0 for τ ∈ [0, N∆)). Theorem 1 below

describes the switching rule and the stability properties of the closed-loop system when there is an

actuator fault in the loop of u2.

When there is a fault in the loop of u1, successful FTC depends on the availability of backup

control loops. From the analysis of Section 2.2.4, we know u1 is essential for the stabilization of the

closed-loop system, however, because of the extra control flexibility introduced by u2, there may

exist a subset of u1, that is u11, which together with u2 can stabilize the closed-loop system. When

there is a fault in the subset u12, the FTC strategy would shut down the control action of u12 and

reconfigure the DMPC algorithms to the backup DMPC of Eqs. 2.10-2.11 to manipulate u11 and

u2 to control the process. Theorem 2 states the switching rule and reconfiguration strategy for this

case.

However, when there is a fault in the subset u11, it is impossible to successfully carry out FTC

without activating backup actuators within the DMPC systems and class of nonlinear systems

considered in this work.

The proposed FTC switching rules for the system of Eq. 2.1 within the DMPC system of

Eqs. 2.5-2.6 are described as follows:

1. When a fault in the actuator associated with u2 is detected at tf , the proposed FTC switching
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rule is:

u1(t) = uL1 (x), ∀ t

u2(t) =

 uL2 (x), t ≤ tf

0, t > tf

(2.14)

2. When a fault in the actuator associated with u12 is detected at tf , the proposed FTC switching

rule is:

u1(t) =


uL1 (x), t ≤ tf ub11(x)

0

 , t > tf

(2.15a)

u2(t) =


uL2 (x), t ≤ tf

ub2(x), t > tf

(2.15b)

In what follows, we summarize the properties of the switching rules of Eqs. 2.14 and 2.15 in

Theorems 1 and 2. In order to state and prove the two theorems, we first introduce the following

proposition.

Proposition 1 (c.f. [35]). Consider the sampled trajectory x̂ of the fault-free system of Eq. 2.1

in closed-loop with the Lyapunov-based control law h applied in a sample-and-hold fashion. Let

∆, ϵs > 0 and ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs)) + α4(α

−1
1 (ρ))Lx,1M1∆ ≤ −ϵs/∆. (2.16)

Then, if ρmin < ρ where

ρmin = max{ρs,max{V (x̂(t+∆)) : V (x̂(t)) ≤ ρs}} (2.17)

and x̂(0) ∈ Ωρ, the following inequality holds

V (x̂(k∆)) ≤ max{V (x̂(0))− kϵs, ρmin}. (2.18)
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Proposition 1 ensures that if the fault-free system of Eq. 2.1 under the control law h(x) im-

plemented in a sample-and-hold fashion starts in Ωρ, then it is ultimately bounded in Ωρmin . By

applying Proposition 1, we know that when the fault-free system of Eq. 2.1 is controlled under

h2(x) implemented in a sample-and-hold fashion, there exists a region Ω2,γmin in which the state of

the closed-loop system, starting in Ω2,γ , is ultimately bounded.

Theorem 1. Consider the system of Eq. 2.1 in closed-loop under the DMPC scheme of Eqs. 2.5-

2.6. If x(t0) ∈ Ωρ where t0 is the initial time, and a fault in u2 is detected and isolated at time

tf , then the switching rule of Eq. 2.14 guarantees that the state of the closed-loop system x(t) is

ultimately bounded in Ωρmin.

Proof. Assume that a fault occurs at time tf in u2. Because of the properties of the filter design of

Eq. 2.13, this fault can be detected and isolated immediately after tf . According to the switching

rule of Eq. 2.14, from t0 to tf , the closed-loop system of Eq. 2.1 is controlled under the DMPC

scheme of Eq. 2.5-2.6 with u1 = uL1 (x) and u2 = uL2 (x). Following from the practical stability

property of the DMPC scheme of Eqs. 2.5-2.6, if x(t0) ∈ Ωρ, the state of the closed-loop system

of Eq. 2.1 will stay in Ωρ and converge to Ωρmin , which implies that at tf , the closed-loop system

state is still in the stability region of h(x), that is x(tf ) ∈ Ωρ.

According to the switching rule of Eq. 2.14, after tf , the closed-loop system will be controlled

with u1 = uL1 and u2 = 0. Because of the fact that x(tf ) ∈ Ωρ and because of the stability

properties of the LMPC 1 of Eq. 2.6, the closed-loop state will converge to the region Ωρmin and

will be ultimately bounded in Ωρmin . This proves Theorem 1.

Theorem 2. Consider the system of Eq. 2.1 in closed-loop under the DMPC scheme of Eqs. 2.5-

2.6. If x(t0) ∈ Ωρ where t0 is the initial time and a fault in u12 is detected and isolated at time tf ,

and if x(tf ) ∈ Ω2,γ, then the switching rule of Eq. 2.15 guarantees that the state of the closed-loop

system x(t) is ultimately bounded in Ω2,γmin.

Proof. Assume that a fault occurs at tf in u12. Because of the properties of the filter design of

Eq. 2.13, this fault can be detected and isolated immediately after tf . According to the switching

rule of Eq. 2.15, from t0 to tf , the closed-loop system of Eq. 2.1 is controlled under the DMPC

scheme of Eq. 2.5-2.6 with u1 = uL1 (x) and u2 = uL2 (x). Following from the practical stability
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property of the DMPC scheme of Eqs. 2.5-2.6, if x(t0) ∈ Ωρ, the state of the closed-loop system of

Eq. 2.1 will be maintained in Ωρ.

According to the switching rule of Eq. 2.14, after tf , the closed-loop system will be controlled

with u11 = ub11, u12 = 0 and u2 = ub2. If x(tf ) ∈ Ω2,γ , the closed-loop state will converge to the

region Ω2,γmin and will be ultimately bounded in Ω2,γmin following the practical stability property

of the backup DMPC scheme of Eqs. 2.10-2.11. This proves Theorem 2.

Remark 2.5. Note that in this work, we assume that upon detection and isolation of a control

actuator fault, the faulty actuator can be shut down and the influence of the faulty actuator can be

completely separated from the rest of the system. This assumption implies that in the normal fault-

free operation and the operation after FTC reconfiguration, the steady-state of the system considered

remains unchanged.

Remark 2.6. In Theorems 1 and 2, we do not consider process or measurement noise and assume

that a fault can be detected and isolated immediately after its occurrence. However, in the presence of

process and measurement noise, faults are detected and isolated when their corresponding residuals

exceed their thresholds which introduce delays in the FDI process. These delays may degrade the

performance but the closed-loop stability under the proposed FTC switching rules can be maintained

provided the delays are small enough. This point is demonstrated in the application of the proposed

methods to a chemical process in Section 2.4.

2.4 Application to a reactor-separator process

2.4.1 Process description and modeling

The process considered in this study is a three vessel, reactor-separator system consisting of two

CSTRs and a flash tank separator as shown in Fig. 3.2. A feed stream to the first CSTR contains

the reactant, A, which is converted into the desired product, B. Species A can also react into an

undesired side-product, C. The solvent does not react and is labeled as D. The effluent of the

first CSTR along with additional fresh feed makes up the inlet to the second CSTR. The reactions

A → B and A → C (referred to as 1 and 2, respectively) take place in the two CSTRs in series

before the effluent from CSTR 2 is fed to a flash tank. The overhead vapor from the flash tank is
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Figure 2.2: Two CSTRs and a flash tank with recycle stream.

condensed and recycled to the first CSTR, and the bottom product stream is removed. All three

vessels are assumed to have static holdup. The dynamic equations describing the behavior of the

system, obtained through material and energy balances under standard modeling assumptions, are

given below:
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dT1

dt
=

F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1) +

−∆H1

ρCp
k1e

−E1
RT1 CA1 +

−∆H2

ρCp
k2e

−E2
RT1 CA1 +

Q1

ρCpV1
(2.19a)

dCA1

dt
=

F10

V1
(CA10 − CA1) +

Fr

V1
(CAr − CA1)− k1e

−E1
RT1 CA1 − k2e

−E2
RT1 CA1 (2.19b)

dCB1

dt
=

−F10

V1
CB1 +

Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1 (2.19c)

dCC1

dt
=

−F10

V1
CC1 +

Fr

V1
(CCr − CC1) + k2e

−E2
RT1 CA1 (2.19d)

dT2

dt
=

F1

V2
(T1 − T2) +

(F20 +∆F20)

V2
(T20 − T2) +

−∆H1

ρCp
k1e

−E1
RT2 CA2

+
−∆H2

ρCp
k2e

−E2
RT2 CA2 +

Q2

ρCpV2
(2.19e)

dCA2

dt
=

F1

V2
(CA1 − CA2) +

(F20 +∆F20)

V2
(CA20 − CA2)− k1e

−E1
RT2 CA2 − k2e

−E2
RT2 CA2 (2.19f)

dCB2

dt
=

F1

V2
(CB1 − CB2)−

(F20 +∆F20)

V2
CB2 + k1e

−E1
RT2 CA2 (2.19g)

dCC2

dt
=

F1

V2
(CC1 − CC2)−

(F20 +∆F20)

V2
CC2 + k2e

−E2
RT2 CA2 (2.19h)

dT3

dt
=

F2

V3
(T2 − T3)−

HvapFr

ρCpV3
+

Q3

ρCpV3
(2.19i)

dCA3

dt
=

F2

V3
(CA2 − CA3)−

Fr

V3
(CAr − CA3) (2.19j)

dCB3

dt
=

F2

V3
(CB2 − CB3)−

Fr

V3
(CBr − CB3) (2.19k)

dCC3

dt
=

F2

V3
(CC2 − CC3)−

Fr

V3
(CCr − CC3) (2.19l)

(2.19m)

The definitions for the variables used in Eq.2.19 can be found in Table 2.1, with the parameter

values given in Table 2.2. Each of the tanks has an external heat input/removal actuator. The

model of the flash tank separator operates under the assumption that the relative volatility for each

of the species remains constant within the operating temperature range of the flash tank. This

assumption allows calculating the mass fractions in the overhead based upon the mass fractions

in the liquid portion of the vessel. It has also been assumed that there is a negligible amount of

reaction taking place in the separator. The following algebraic equations model the composition of
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Table 2.1: Process variables

CA1, CA2, CA3 concentrations of A in vessels 1, 2, 3
CB1, CB2, CB3 concentrations of B in vessels 1, 2, 3
CC1, CC2, CC3 concentrations of C in vessels 1, 2, 3
CAr, CBr, CCr concentrations of A, B, C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, 3
T10, T20 feed stream temperatures to vessels 1, 2
F1, F2, F3 effluent flow rates from vessels 1, 2, 3
F10, F20 feed stream flow rates to vessels 1, 2
CA10, CA20 concentrations of A in the feed stream to vessels 1, 2
Fr recycle flow rate
V1, V2, V3 volumes of vessels 1, 2, 3
u1, u2, u3, u4 manipulated inputs
E1, E2 activation energy for reactions 1, 2
k1, k2 pre-exponential values for reactions 1, 2
∆H1, ∆H2 heats of reaction for reactions 1, 2
Hvap heat of vaporization
αA, αB, αC , αD relative volatility of A, B, C, D
MWA, MWB, MWC molecular weights of A, B, and C
Cp, R heat capacity and gas constant

the overhead stream relative to the composition of the liquid holdup in the flash tank:

CAr =
αACA3

K
, CBr =

αBCB3

K
, CCr =

αCCC3

K

K = αACA3
MWA

ρ
+ αBCB3

MWB

ρ
+ αCCC3

MWC

ρ
+ αDxDρ

(2.20)

where xD is the mass fraction of the solvent in the flash tank liquid holdup and is found from a

mass balance.

The system of Eq. 2.19 is modeled with sensor measurement noise and Gaussian process noise.

The sensor measurement noise is generated using a zero-mean normal distribution with a standard

deviation of 10−1 for the three temperature states and 10−2 for the nine concentration states. Noise

is applied to each continuous measurement of temperatures and concentrations with a frequency of

∆m = 0.001 hr. The process noise is generated similarly, with a zero-mean normal distribution and

the same standard deviation values. Process noise is added to the right-hand side of the ODEs in

the system of Eq. 2.19 and changes with a frequency of ∆p = 0.001 hr. In all three vessels, the heat

input/removal is a manipulated variable for controlling the reactors at the appropriate operating
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Table 2.2: Parameter values

T10 = 300, T20 = 300 K

F10 = 5, F20 = 5, Fr = 1.9 m3

hr

CA10 = 4, CA20 = 3 kmol
m3

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ
kmol

k1 = 3E6, k2 = 3E6 1
hr

∆H1 = −5E4, ∆H2 = −5.3E4 kJ
kmol

Hvap = 5 kJ
kmol

Cp = 0.231 kJ
kgK

R = 8.314 kJ
kmolK

ρ = 1000 kg
m3

αA = 2, αB = 1, αC = 1.5, αD = 3 unit-less

MWA = 50, MWB = 50, MWC = 50 kg
kmol

temperature. In addition the second tank’s inlet flow rate is used as a manipulated variable. The

system has one unstable and two stable steady states. The desired operating steady state is the

unstable steady state:

xuss = [T1 CA1 CB1 CC1 T2 CA2 CB2 CC2 T3 CA3 CB3 CC3]
T

= [370 3.32 0.17 0.04 435 2.75 0.45 0.11 435 2.88 0.50 0.12]T

The first set of manipulated inputs is the heats injected to or removed from the three vessels,

that is u1 = [Q1 Q2 Q3]
T ; the second set of manipulated input is the the inlet flow rate to vessel

2, that is u2 = ∆F20 = F20 − F20s. The control variables are deviation variables, whose values at

the desired steady state are zero and subject to the constraints |Qi| ≤ 106 KJ/hr, (i = 1, 2, 3) and

|∆F20| ≤ 5 m3/hr.

We consider a quadratic Lyapunov function V (x) = xTPx with

P = diag§([20 103 103 103 10 103 103 103 10 103 103 103])

§diag(v) denotes a matrix with its diagonal elements being the elements of vector v and all the other elements
being zeros.
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and design the controller h(x) as three PI controllers with proportional gains Kp1 = Kp2 = Kp3 =

8000 and integral time constants τI1 = τI2 = τI3 = 10 based on the measurements of T1, T2 and

T3, respectively. Note that, in the absence of process and measurement noise, this design of h(x)

manipulating u1 = [Q1 Q2 Q3] can stabilize the closed-loop system asymptotically without the help

of u2. Based on h(x) and V (x), we design LMPC 1 to determine u1 and LMPC 2 to determine

u2 following the forms given in Eqs. 2.6 and 2.5, respectively. This control design is the fault-

free control configuration for the closed-loop system. In the design of the LMPC controllers, the

weighting matrices are chosen to be Qc = diag([20 103 103 103 10 103 103 103 10 103 103 103]),

R1 = diag([(5 5 5) ·10−12]) and R2 = 100. The horizon for the optimization problem is N = 5 with

a time step of ∆ = 0.01 hr.

In addition, the control input u1 can be divided into two sets, u11 = [Q1 Q3]
T and u12 = Q2.

The input combination u11 and u2 is able to stabilize the closed-loop system which can be used

as the input configuration of the backup DMPC system of Eqs. 2.10-2.11. In order to design the

backup DMPC, we need to design a second Lyapunov-based controller h2(x) which manipulates Q1,

Q3 and ∆F20. We also design h2 through PI control law with proportional gains Kb
p1 = Kb

p2 = 8000,

Kb
p3 = −0.3 and integral time constants τ bI1 = τ bI2 = τ bI3 = 10 based on the measurements of T1,

T3 and T2, respectively. The control design h2 can stabilize the closed-loop system asymptotically

with Q2 = 0 in the absence of process and measurement noise. In the design of the backup DMPC

system, we choose V2(x) = V (x). The backup DMPC system is the backup control configuration

when there is a fault in the actuators associated with u12.

In order to perform FDI for the reactor-separator system, we construct the FDI filters for the

states affected directly by the four manipulated inputs as in Eq. 2.13. The states affected directly

by the manipulated inputs are T1, CA2, CB2, CC2, T2 and T3. In addition, the FDI residuals take

the following form:

rTi(t) = |T̂i(t)− Ti(t)|, i = 1, 2, 3

rCi2(t) = |Ĉi2(t)− Ci2(t)|, i = A,B,C.
(2.21)

The threshold values used for each residual in the numerical simulations are as follows:

rTi,max = 5 K, i = 1, 2, 3

rCi2,max = 0.08 kmol/m3, i = A,B,C.
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If a fault affects more than one state directly, more than one residual will be nonzero. However,

because of the process dynamics and threshold values, the residuals will not exceed the thresholds

at the same time. In order to avoid false isolation of faults, we also use a fault isolation waiting

time. That is, when the FDI system detects a fault at tf , it will not isolate the fault until tw

time later. This waiting time tw is chosen to make sure that different faults have different fault

signatures to avoid false isolation but should also be sensitive enough to isolate faults in a timely

manner. The waiting time tw used in the simulations is tw = 0.015hr.

We consider two different faults in the following simulations. First, we will consider a fault in

the heat input/removal actuator to vessel 2, that is a fault in Q2. Because Q2 only affects directly

the state T2 and all the measurements are continuously available, when there is an actuator fault

in Q2, only the residual corresponding to T2 will exceed its threshold. The second fault we will

consider is a fault in the inlet flow actuator to vessel 2, that is a fault in ∆F20. Because the control

action ∆F20 affects directly the states T2, CA2, CB2 and CC2, when there is an actuator fault in

F20, more than one residuals will exceed their thresholds. Note that the thresholds and waiting

time have been chosen in a way that we can distinguish between faults in Q2 and F20 correctly.

2.4.2 Simulation Results

In the following simulations, the plant is initialized at the target steady state (xuss) and simulated

up to t = 1.0 hr with a fault being triggered at time t = 0.2 hr for all the simulations. The

measurement and process noise bounds used were wm = 0.1wp with

wp = [2.5 0.25 0.25 0.25 2.5 0.25 0.25 0.25 2.5 0.25 0.25 0.25]
.

First, we consider the fault in the heat input/removal actuator to vessel 2 which renders

Q2 = −106 KJ/hr. Figures 2.3 and 2.4 show the temperature and concentration profiles for

each vessel when all controlled actuators are completely functional up to time t = 0.2 hr, using

u1 = [Q1 Q2 Q3]
T and u2 = ∆F20. The dotted lines in the figures represent the target steady-state

values. In this example, no FTC is implemented and at time t = 0.2 hr a fault is triggered and the

fault is detected at time t = 0.201 hr and correctly isolated to a fault in Q2 at time t = 0.216 hr;

we see that the control system cannot stabilize the process at the unstable steady state. Figure 2.5

shows the corresponding residuals with no FTC.
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Figure 2.3: Temperature profiles for each vessel with a fault in the heat input/removal actuator to
vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated at t = 0.216 hr. No FTC is
implemented.
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Figure 2.4: Concentration profiles (CA = x, CB = o, CC = ⋄) for each vessel with a fault in the
heat input/removal actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated
at t = 0.216 hr. No FTC is implemented.
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Figure 2.5: FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2)
with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 hr. Fault is detected at
t = 0.201 hr and isolated at t = 0.216 hr. No FTC is implemented.

Similar to the above scenario, the same simulation is considered, but upon isolation of the

fault in Q2, the control system is reconfigured as follows: LMPC 1 is updated to only optimize

u11 = [Q1 Q3]
T (i.e., from u1 = uL1 to u1 = [ub11 0]T ) and shut down the input for Q2 (i.e.,

u12 = Q2 = 0) while maintaining the identical LMPC 2 for u2 (i.e., u2 = uL2 ). This reconfiguration

implies that only the FTC switching rule of Eq. 2.15a is implemented and LMPC 2 for u2 is

operating on the assumption that LMPC 1 is using all three heat input/removal actuators. The

temperature and concentration profiles of the closed-loop system under this reconfiguration are

shown in Figs. 2.6 and 2.7. From Figs. 2.6 and 2.7, we see that the system cannot be stabilized

using only the switching rule of Eq. 2.15a. As shown in Fig. 2.8, using only the FTC switching rule

of Eq. 2.15a, the control action for u2 = ∆F20 is not as large as required for stabilization since u2

expects the control action of Q2 to help stabilize the system; please also see Fig. 2.12 for the profile

of u2 when the complete FTC switching rule of Eq. 2.15 is implemented for comparison.

The next setup is identical to the conditions tested previously, where we consider a fault in Q2,

but the FTC will now use the complete switching rule of Eq. 2.15 where the LMPC control law

of u2 is also updated to account for the complimentary controller u11 = [Q1 Q3]
T controlling only
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Figure 2.6: Temperature profiles for each vessel with a fault in the heat input/removal actuator to
vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated at t = 0.216 hr. The FTC
switching rule of Eq. 2.15a is implemented.
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Figure 2.7: Concentration profiles (CA = x, CB = o, CC = ⋄) for each vessel with a fault in the
heat input/removal actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated
at t = 0.216 hr. The FTC switching rule of Eq. 2.15a is implemented, but cannot stabilize T2 and
T3 to the desired steady-state.
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Figure 2.8: Control actions with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 hr.
Fault is detected at t = 0.201 hr and isolated at t = 0.216 hr. The FTC switching rule of Eq. 2.15a
is implemented.

two heat input/removal actuators. Figures 2.9 and 2.10 show the temperature and concentration

profiles for each vessel when the fault in Q2 is triggered at t = 0.2 hr and FTC is carried out when

the fault is isolated. Figure 2.11 shows the corresponding residuals, where the fault is detected at

time t = 0.201 hr and isolated at t = 0.216 hr. We see from these figures that when there is a

fault in Q2, the state of the closed-loop system deviates from the required steady state, and upon

isolation of the fault, the FTC switching rule of Eq. 2.15 is carried out and the reconfigured DMPC

is able to drive the state of the system back to the desired steady state. The temperature and

concentration trajectories return near the steady state at t = 0.60 hr and then minimal control

action is required to further maintain system stability. The reconfiguration of u2 allows the system

to be stabilized with an appropriately strong control action from ub2. The difference in control action

can clearly be seen by comparing Fig. 2.12, where both u1 and u2 controllers are reconfigured, to

Fig. 2.8, where only u1 is reconfigured.

Next, we consider the fault in the inlet flow control actuator of vessel 2, F20 which renders

∆F20 = 5 m3/hr. Figures 2.13 and 2.14 show the temperature and concentration profiles for each

vessel when the fault in F20 is triggered at t = 0.2 hr and no FTC is implemented; we see that
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Figure 2.9: Temperature profiles for each vessel with a fault in the heat input/removal actuator to
vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated at t = 0.216 hr. The FTC
switching rule of Eq. 2.15 is implemented.
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Figure 2.10: Concentration profiles (CA = x, CB = o, CC = ⋄) for each vessel with a fault in the
heat input/removal actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.201 hr and isolated
at t = 0.216 hr. The FTC switching rule of Eq. 2.15 is implemented.
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Figure 2.11: FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2)
with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 hr. Fault is detected at
t = 0.201 hr and isolated at t = 0.216 hr. The FTC switching rule of Eq. 2.15 is implemented.
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Figure 2.12: Control actions with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 hr.
Fault is detected at t = 0.201 hr and isolated at t = 0.216 hr. The FTC switching rule of Eq. 2.15
is implemented.

31



0 0.2 0.4 0.6 0.8 1
366

368

370

372

V
1   

Temperatures (K)

0 0.2 0.4 0.6 0.8 1
410

420

430

440

V
2   

0 0.2 0.4 0.6 0.8 1
432

433

434

435

436

V
3   

Time (hr)

Figure 2.13: Temperature profiles for each vessel with a fault in the inlet flow actuator to vessel 2 at
t = 0.2 hr. Fault is detected at t = 0.204 hr and isolated at t = 0.219 hr. No FTC is implemented.

the control system cannot stabilize the process at the desired steady state. Figure 2.15 shows the

corresponding residuals, from which we see that the fault is detected at t = 0.204 hr when the

residual of T2 exceeds its threshold and the fault can be isolated at t = 0.219 hr when the residuals

corresponding to T2 and CB2 exceed their thresholds, respectively.

In the last simulation scenario, we consider the same fault in F20, but upon detection at t =

0.204 hr and isolation of the fault at t = 0.219 hr, we carry out the switching rule of Eq. 2.14 and

the input F20 is shut down and separated from the plant. In this particular example the FTC system

only reconfigures one controller by switching off the u2 controller and resetting u2 = ∆F20 = 0,

while maintaining the LMPC controller u1 the same. We know from Section 2.3.2 that u1 with

u2 = 0 can asymptotically stabilize the trajectories toward the set-point. Figures 2.16 and 2.17

show the temperature and concentration profiles for each vessel when the F20 fault is triggered

at t = 0.2 hr and FTC is carried out after the waiting time tw. We see from these figures that

when there is a fault in F20, the state of the closed-loop system deviates from the desired steady

state, and upon the isolation of the fault, the FTC switching rule of Eq. 2.14 is carried out and the

reconfigured DMPC is able to drive the state of the closed-loop system back to the desired steady

state. The corresponding residuals are shown in Fig. 2.18, where we see that an actuator fault in
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Figure 2.14: Concentration profiles (CA = x, CB = o, CC = ⋄) for each vessel with a fault in the
inlet flow actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.204 hr and isolated at
t = 0.219 hr. No FTC is implemented.
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Figure 2.15: FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2)
with a fault in the inlet flow actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.204 hr
and isolated at t = 0.219 hr. No FTC is implemented.
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Figure 2.16: Temperature profiles for each vessel with a fault in the inlet flow actuator to vessel 2
at t = 0.2 hr. Fault is detected at t = 0.204 hr and isolated at t = 0.219 hr. The FTC switching
rule of Eq. 2.14 is implemented.
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Figure 2.17: Concentration profiles (CA = x, CB = o, CC = ⋄) for each vessel with a fault in the
inlet flow actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.204 hr and isolated at
t = 0.219 hr. The FTC switching rule of Eq. 2.14 is implemented.
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Figure 2.18: FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2)
with a fault in the inlet flow actuator to vessel 2 at t = 0.2 hr. Fault is detected at t = 0.204 hr
and isolated at t = 0.219 hr. The FTC switching rule of Eq. 2.14 is implemented.

F20 significantly affects the residuals corresponding to T2 and CB2.
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2.5 Conclusions

In this chapter, a model-based FDI and FTC system was designed for the monitoring and reconfigu-

ration of a DMPC system applied to general nonlinear processes in the presence of control actuator

faults, and specific FTC switching rules were developed to guide the control system reconfiguration.

The applicability and effectiveness of the proposed design was demonstrated via a chemical process

example which consists of two CSTRs and a flash tank separator with a recycle stream.
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Chapter 3

Data-Based Fault Detection and

Isolation Using Adaptive Isolation

Windows

3.1 Introduction

In this chapter, we develop a data-based monitoring and reconfiguration system for a distributed

model predictive control system in the presence of control actuator faults. Specifically, we first

design fault detection filters and filter residuals, which are computed via exponentially weighted

moving average, to effectively detect faults. Then, we propose a fault isolation approach which

uses adaptive fault isolation time windows whose length depends on the rate of change of the

fault residuals to quickly and accurately isolate actuator faults. Simultaneously, we estimate the

magnitudes of the faults using a least-squares method and based on the estimated fault values, we

design appropriate control system reconfiguration (fault-tolerant control) strategies to handle the

actuator faults and maintain the closed-loop system state within a desired operating region. A

nonlinear chemical process example is used to demonstrate the approach.
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3.2 Notation

The operator | · | is used to denote the absolute value of a scalar and the operator ∥·∥ is used to

denote Euclidean norm of a vector, while ∥·∥Q refers to the square of the weighted Euclidean norm,

defined by ∥x∥Q = xTQx for all x ∈ Rn. The symbol diag(v) denotes a square diagonal matrix

whose diagonal elements are the elements of the vector v.

3.3 Problem formulation and preliminaries

3.3.1 Class of nonlinear systems

We consider nonlinear processes described by the following state-space model:

ẋ(t) = f(x) +

2∑
i=1

gi(x)(ui(t) + ũi(t)) (3.1)

where x ∈ Rn denotes the set of state variables, and u1 ∈ Rm1 and u2 ∈ Rm2 denote two sets of

manipulated inputs, and ũ1 ∈ Rm1 and ũ2 ∈ Rm2 denote the unknown fault vectors for u1 and u2,

respectively. We consider that u1 + ũ1 and u2 + ũ2 take values in non-empty convex sets U1 ∈ Rm1

and U2 ∈ Rm2 , respectively. The convex sets U1 and U2 are defined as follows:

U1 = {u1 + ũ1 ∈ Rm1 : ∥u1 + ũ1∥ ≤ umax
1 }

U2 = {u2 + ũ2 ∈ Rm2 : ∥u2 + ũ2∥ ≤ umax
2 }

where umax
1 and umax

2 are the magnitudes of the input constraints. The system of Eq. 3.1 can be

re-written in a compact form as follows:

ẋ(t) = f(x) + g(x)(u(t) + ũ(t))

where g(x) = [g1(x) g2(x)], u(t) = [u1(t)
T u2(t)

T ]T and ũ(t) = [ũ1(t)
T ũ2(t)

T ]T . We also assume

that U is a suitable composition of U1 and U2 such that u + ũ ∈ U is equivalent to u1 + ũ1 ∈ U1

and u2 + ũ2 ∈ U2.

We use the variable ũf,j , j = 1, . . . ,m1+m2, to model the possible faults associated with the jth
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element in the manipulated input vector u. Under fault-free operating conditions, we have ũ = 0,

and hence, ũf,j = 0 for all j = 1, . . . ,m1 +m2. When fault j occurs, ũf,j takes a non-zero value.

We assume that f and g are locally Lipschitz vector functions and that f(0) = 0. This means that

the origin is an equilibrium point for the fault-free system (ũ = 0 for all t) with u = 0. We also

assume that the state x of the system is available synchronously and continuously at each sampling

time.

Remark 3.1. Note that the use of two sets of manipulated inputs is adopted because of the im-

plementation of a distributed model predictive control system to regulate the process; please see

Subsection 3.3.2 for the control system design. An example of a chemical process system described

by Eq. 3.1 is given in Section 3.5.2

3.3.2 Fault-free control system design

We assume that there exists a nonlinear control law h(x) which determines u1 (i.e., u1(t) = h(x(t)))

and renders the origin of the fault-free closed-loop system asymptotically stable with u2(t) = 0.

This assumption is essentially a standard stabilizability requirement made in all linear/nonlinear

control methods and implies that there exists a Lyapunov function V (x) of the system whose time

derivative is always negative when u1 = h(x) is applied to the fault-free closed-loop system [23, 8].

We adopt the DMPC architecture introduced in [25] to design the fault-free control system.

In this DMPC architecture, one LMPC is designed to determine u1 and is responsible for the

closed-loop stability; and another LMPC is designed to compute u2 and to coordinate with u1 to

improve the closed-loop performance. We will refer to the two LMPCs computing u1 and u2 as

LMPC 1 and LMPC 2, respectively. The two LMPCs are evaluated in a sequential fashion (i.e.,

LMPC 2 is first evaluated and then LMPC 1 is evaluated) at discrete time instants {tk≥0} with

tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ is a sampling time.

Specifically, the optimization problem of LMPC 2 at time tk depends on the state measurement
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x(tk) and is formulated as follows:

min
u2∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (3.2a)

s.t. ˙̃x(t) = f(x̃(t)) +

2∑
i=1

gi(x̃(t))ui(t) (3.2b)

x̃(tk) = x(tk) (3.2c)

u1(t) = h(x̃(tk+j)),∀ t ∈ [tk+j , tk+j+1) (3.2d)

u2(t) ∈ U2 (3.2e)

∂V (x)

∂x
g2(x(tk))u2(tk) ≤ 0 (3.2f)

with L(x̃, u1, u2) = ∥x̃(τ)∥Qc
+ ∥u1(τ)∥Rc1

+ ∥u2(τ)∥Rc2
where S(∆) is the family of piece-wise

constant functions with sampling period ∆, N is the prediction horizon, Qc, Rc1 and Rc2 are

positive definite weighting matrices, j = 0, . . . , N − 1, x̃ is the predicted trajectory of the fault-

free system with u2 being the input trajectory computed by LMPC 2 of Eq. 3.2 and u1 being

the nonlinear controller h(x) applied in a sample-and-hold fashion. The optimal solution to this

optimization problem is denoted u∗2(t|tk). This information is sent to LMPC 1. The optimization

problem of LMPC 1 depends on x(tk) and the decision made by LMPC 2 (i.e., u∗2(t|tk)). Specifically,

LMPC 1 is based on the following optimization problem:

min
u1∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (3.3a)

s.t. ˙̃x(t) = f(x̃(t)) +

2∑
i=1

gi(x̃(t))ui(t) (3.3b)

x̃(t) = x(tk) (3.3c)

u1(t) ∈ U1 (3.3d)

u2(t) = u∗2(t|tk) (3.3e)

∂V (x)

∂x
g1(x(tk))u1(tk) ≤

∂V (x)

∂x
g1(x(tk))h(x(tk)). (3.3f)

The optimal solution to this optimization problem is denoted by u∗1(t|tk).

Once both optimization problems are solved, the manipulated inputs of the DMPC system
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based on LMPC 1 and LMPC 2 are defined as follows:

uL1 (t) = u∗1(t|tk), ∀t ∈ [tk, tk+1)

uL2 (t) = u∗2(t|tk), ∀t ∈ [tk, tk+1).

The fault-free closed-loop system of Eq. 3.1 under this DMPC scheme with inputs defined by

u1 = uL1 and u2 = uL2 maintains practical stability because of the two Lyapunov-based constraints

of Eqs. 3.2f and 3.3f [25].

3.3.3 FTC considerations

The presence of the control action u2 brings extra control flexibility to the closed-loop system which

can be used to carry out FTC. Specifically, we further assume that the control input u1 can be

decomposed into two subsets (i.e., u1 = [uT11 uT12]
T ) and that there exists a nonlinear control law

h2(x) = [h21(x)
T h22(x)

T ]T which determines u11 and u2 (i.e., u11 = h21(x) and u2 = h22(x)) and

is able to asymptotically stabilize the fault-free closed-loop system with u12 = 0. This assumption

implies that there exist a Lyapunov function V2(x) of the system whose time derivative is always

negative when u11 = h21(x), u12 = 0 and u2 = h22(x) are applied.

Based on h2(x), we can design a backup DMPC system (i.e., DMPC with LMPC 1 of Eq. 3.5 and

LMPC 2 of Eq. 3.4 below) to manipulate u11 and u2 to stabilize the closed-loop system following

the results developed in [24]. We still design two LMPC controllers in the backup DMPC system.

One LMPC is used to manipulate u11 and the other one is used to manipulate u2. In this backup

DMPC system, the two LMPCs coordinate their actions to maintain the closed-loop stability. We

refer to the LMPC manipulating u11 as the backup LMPC 1 and the LMPC manipulating u2 as

the backup LMPC 2. The two backup LMPCs are also evaluated in sequence.
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The backup LMPC 2 optimizes u2 and is designed as follows:

min
u2∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (3.4a)

s.t. ˙̃x(t) = f(x̃(t)) + g1(x̃(t))[u11(t)
Tu12(t)

T ]T + g2(x̃(t))u2(t) (3.4b)

x̃(tk) = x(tk) (3.4c)

u11(t) = h21(x̃(tk+j)), ∀ t ∈ [tk+j , tk+j+1) (3.4d)

u12(t) = 0 (3.4e)

u2(t) ∈ U2 (3.4f)

∂V2(x)

∂x
g2(x(tk))u2(tk) ≤

∂V2(x)

∂x
g2(x(tk))h22(x(tk)). (3.4g)

The solution to the optimization problem of Eq. 3.4 is denoted ub,∗2 (t|tk). The backup LMPC 1

optimizes u11 and is designed as follows:

min
u11∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (3.5a)

s.t. ˙̃x(t) = f(x̃(t)) + g1(x̃(t))[u11(t)
Tu12(t)T ]T + g2(x̃(t))u2(t) (3.5b)

x̃(tk) = x(tk) (3.5c)

u11(t) ∈ U1 (3.5d)

u12(t) = 0 (3.5e)

u2 = ub,∗2 (t|tk) (3.5f)

∂V2(x)

∂x
g1(x(tk))[u11(t)

T 0T ]T ≤ ∂V2(x)

∂x
g1(x(tk))[h21(x(tk))

T 0T ]T . (3.5g)

The solution to the optimization problem of Eq. 3.5 is denoted ub,∗11 (t|tk). The control inputs of the

backup DMPC are defined as follows:

ub11(t) = ub,∗11 (t|tk), ∀t ∈ [tk, tk+1)

ub12(t) = 0, ∀t

ub2(t) = ub,∗2 (t|tk), ∀t ∈ [tk, tk+1)

The fault-free closed-loop system of Eq. 3.1 under the backup DMPC control with inputs defined
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by u11 = ub11, u12 = 0 and u2 = ub2 maintains practical stability of the closed-loop system because

of the Lyapunov-based constraints of Eqs. 3.4g and 3.5g [24].

To present the proposed method, in this work, we consider control actuator faults that can be

detected by appropriate nonlinear dynamic fault filters via observing the evolution of the closed-

loop system state. In order to isolate the occurrence of a fault, it is further required to assume

that the control actuator in question is the only one influencing the observed “faulty” states (i.e.,

each fault has a unique fault signature). For more discussions on systems having verifiable isolable

structures, please see [34, 36].

3.4 FDI and FTC system design

In this section, we develop a combined model-based and data-based FDI and FTC method for the

closed-loop system of Eq. 3.1 under the DMPC of Eqs. 3.2-3.3.

3.4.1 Design of fault detection filters and residuals

The fault detection and isolation filter is designed on the basis of the process model of Eq. 3.1 under

the DMPC system of Eqs. 3.2-3.3 used to control the process and it is used to predict the expected

process dynamic state response in the absence of faults. These expected state values are compared

with the corresponding real-time measured process states, forming the residuals (i.e., rp(t) defined

below). Then, the residuals are compared with threshold values computed from closed-loop data

under normal operation and a fault is declared (detected) when the residual values exceed the

thresholds. Fault isolation subsequently is carried out by comparing the fault signature (i.e., what

residuals exceed their thresholds) with the signature of process/fault interaction of the various

explicitly-modeled faults computed from the process model. The DMPC system of Eqs. 3.2-3.3 is

the control system for the fault-free closed-loop system. We first design an FDI scheme to detect

faults in this control system. In this FDI scheme, a filter is designed for each state and the design

of the filter for the pth, p = 1, . . . , n, state in the system state vector x is as follows [34]:

˙̂xp(t) = fp(Xp) + g1p(Xp)u
L
1 (t) + g2p(Xp)u

L
2 (t) (3.6)
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where x̂p is the filter output for the pth state, fp, g1p and g2p are the pth components of the

vector functions f , g1 and g2, respectively. The state Xp is obtained from both the actual state

measurements, x, and the filter output, x̂p, as follows:

Xp(t) = [x1(t), . . . , xp−1(t), x̂p(t), xp+1(t), . . . , xn(t)]
T .

Note that in the filter of Eq. 3.6, the control inputs uL1 (t) and uL2 (t) are determined by LMPC 1

of Eq. 3.3 and LMPC 2 of Eq. 3.2 as applied to the actual process based on the state Xp, and are

updated every control sampling time ∆ (i.e., the sampling time instants {tk≥0}).

The FDI filters are only initialized at t = 0 such that x̂p(0) = xp(0). The information generated

by the filters provides a fault-free estimate of the actual system state at any time t and allows easy

detection of the actual system state deviations due to faults. For each state associated with a filter,

an FDI residual is defined as follows:

rp(t) = ∥x̂p(t)− xp(t)∥

with p = 1, . . . , n. The residual rp is computed continuously because x̂p(t) is known for all t and the

state measurement, x, is also available for all t. If no fault occurs, the filter states track the system

states. In this case, the dynamics of the system states and the FDI filter states are identical, so

rp(t) = 0 for all times.

In the practical case where sensor measurement noise and process noise are present, the residual

will be nonzero even without an actuator fault. In order to reduce the influence of process noise on

fault detection, we define a weighted residual rE,p, p = 1, ..., n, for each residual rp, calculated at

discrete time instants {ti≥0} with ti = t0 + i∆r, i = 0, 1, 2, .... The weighted residual is calculated

using an exponentially weighted moving average (EWMA) method as follows [27]:

rE,p(ti) = λrp(ti) + (1− λ)rE,p(ti−1) (3.7)

with rE,p(t0) = rp(t0) and the weighting factor λ ∈ (0, 1]. The parameter λ determines the rate

at which previous data enter into the calculations of the weighted residual. When λ = 1, rE,p is

equivalent to rp. The benefit of using EWMA residuals is their ability to better capture smaller
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drifts in the system and to provide protection against occasional spikes. The value of λ is typically

set between 0.2 and 0.5 depending on the sensitivity and responsiveness desired [27]. All further

mention of residuals will be in reference to the EWMA residuals.

Also due to sensor measurement and process noise, fault detection thresholds are necessary so

that a fault is declared only when a residual exceeds its specific threshold value. The thresholds are

based on historical process variance data under no fault (normal) operating conditions and chosen

to the desired degree of confidence to quickly detect possible faults. In some cases, the residual

may deviate temporarily due to normal process variance and should not be interpreted as a fault.

In these cases, it is important to properly confirm that the residual is deviating because of a fault

by waiting a specified amount of time. By waiting, we improve our confidence that a fault has

occurred and reduce the probability of false alarms. In the detection of a fault, three threshold

values for each EWMA residual are used. The threshold values for the EWMA residual, rE,p, are

calculated as discussed in [27] using the following formula:

σp,k = r̄p + ksp

√
λ

2− λ
(3.8)

where k = 3, 4, 5 are the weighting factors used, r̄p and sp are the mean value and standard

deviation of the pth residual (rp) based on historical fault-free operation data of the closed-loop

system, respectively. Specifically, the historical process operation data in the application discussed

in the next section were obtained by running the closed-loop system under fault-free conditions

for a simulated period of 5 hours and collecting the system state and residual values in order to

compute the average value and standard deviation for each state and each residual. These values

where then used in conjunction with Eq. 3.8 to compute the threshold values (σp,k) for each EWMA

residual.

3.4.2 Fault detection and isolation using adaptive windows

In this subsection, we augment our previous FDI system [34] to include an adjustable time window

based on the rate of change of the residual with the goals of reducing the probability of false alarms

and false isolation, and achieving a quicker fault recovery response.

On the occurrence of a fault, certain residuals directly associated with the fault will immediately
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become nonzero at different rates (or in the case where process noise and measurement noise are

present their thresholds will be exceeded at different times depending on the fault’s magnitude).

An improvement over previous work is the use of EWMA residuals in combination with adjustable

fault isolation time windows.

When there is a residual that exceeds its second threshold and stays above it for a time period

∆td, then a fault is declared. For example, if rE,p exceeds σp,4 at time tσp,4 and stays above σp,4

from tσp,4 to tσp,4 + ∆td, then a fault is declared. The waiting time ∆td is used to reduce the

incidence of false alarms and, in particular, intermittent spikes.

Fault isolation is carried out simultaneously with fault detection. We define a fault signature

as a set Ip = [i1, i2, ..., in] where ip = 1 if the residual rE,p ≥ σp,3, otherwise ip = 0 for a particular

fault ũf,p. We consider that the system has an isolable structure which implies that each of the

possible faults has a unique fault signature; that is, Ip ̸= Iq with p ̸= q. Based on the rate of

change of the first residual which exceeds its second threshold, a time window over which a fault

may be isolated is calculated. If there is no residual that exceeds its third threshold within the

time window, the fault is isolated at the end of the time window. The isolated fault has a signature

composed of all the residuals that exceed their second thresholds. If there is at least one residual

that exceeds its third threshold within the fault isolation time window, a new fault isolation time

window is calculated and the fault is isolated at the end of this new time window. For example, if

rE,p is the first residual that exceeds its threshold σp,4, a time window, ∆tp, is calculated as follows:

∆tp = w(tσp,4 − tσp,3) (3.9)

where w is a constant or a complex function of the model and its current state, and tσp,4 and tσp,3

are the time instants the residual rE,p exceeds σp,4 and σp,3, respectively. If from tσp,4 to tσp,4 +∆tp,

there is no residual that exceeds its third threshold, the fault is isolated at time tσp,4 +∆tp with a

signature composed of all the residuals whose values exceed their second thresholds. If from tσp,4 to

tσp,4 +∆tp, there is at least one residual that exceed its third threshold, for example, rE,q exceeds

σq,5 at time tσq,5 , then a new fault isolation time window, ∆tq, is calculated following Eq. 3.9 based

on the change rate of rE,q from tσq,4 to tσq,5 , and the fault is isolated at min{tσp,4 +∆tp, tσq,5 +∆tq}.

An example with one residual is presented in Fig. 3.1. In Fig. 3.1, a fault occurs at time tf ,
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which drives a residual rE,p to go up. The residual exceeds its first and second thresholds at time

tσp,3 and tσp,4 , respectively. Once the residual exceeds its second threshold σp,4 and stays above it

for a short waiting time ∆td, a fault is declared at time td (td = tσp,4 + ∆td). At the time tσp,4 ,

a fault isolation time window ∆p is also calculated. Because the residual continues to increase

and exceeds its third threshold, σp,5, at time tσp,5 , a new isolation window ∆tp2 is calculated. The

fault is isolated at time ts1 = min{ts1, ts2}. The isolated fault has a signature composed of all the

residuals that exceed their second threshold.

3.4.3 Fault parameter estimation

After a fault has been isolated, the FTC system must know the magnitude of the fault in order

to target the corresponding new operating point and properly stabilize the system in the presence

of the fault. To simplify the description of the proposed method, we consider faults of constant

magnitudes in this work; however, faults with slowly time-varying values can be handled using the

proposed method in a straightforward manner.

When a residual (rE,p) exceeds its first threshold (σp,3), we begin to collect the sampled system

states as well as the actual control inputs applied to the system. When the fault is confirmed

and isolated, a least square optimization problem is solved to get an estimate of the magnitude

of the fault based on the sampled system states and the actual control inputs. Specifically, we

collect the sampled system states, x(t), and record the actual control inputs (i.e., u1(t) = uL1 (t) and

u2(t) = uL2 (t)) applied to the system for tσp,3 to the fault isolation time tisolate with a sampling time

∆e. The magnitude of the fault ũf,j is estimated by solving the following optimization problem:

min
ũf,j

M∑
i=0

(x(tf + i∆e)− x̃(tf + i∆e))
2 (3.10a)

s.t. ˙̃x(t) = f(x̃(t)) + g(x̃(t))(uL(t) + d) (3.10b)

x̃(tf ) = x(tf ) (3.10c)

where uL(t) = [uL1 (t)
T uL2 (t)

T ]T is the actual control inputs that have been applied to the closed-

loop system from tσp,3 to tisolate, M is the maximum integer satisfying M∆e ≤ tisolate − tσp,3 ,

d = [0 · · · ũf,j · · · 0]T is the fault vector, and x(tf ) is the system state at the fault detection
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time. The solution to the optimization problem of Eq. 3.10 is denoted by ũ∗f,j , which is an optimal

estimate of the actual fault ũf,j from a least-square point of view.

3.4.4 FTC strategies

When a fault is detected, isolated and the magnitude of the fault is estimated, suitable FTC

strategies can be carried out to keep the closed-loop system state within a desired operating region.

Because of the fault, the origin (the operating point of the fault-free system) may not be achievable

because of the input constraints and the system structure. In this case, we may operate the system

at a new operating point within the desired operating region. To determine the new operating

point xs, we propose to solve an optimization problem. Specifically, when the fault is ũ∗f,j , the new

operating point, xs, is obtained by solving the following optimization problem:

min
xs,us

∥xs∥S (3.11a)

s.t. f(xs) + g(xs)(us + d) = 0 (3.11b)

us + d ∈ U (3.11c)

xs ∈ X (3.11d)

where S is a positive weighting matrix, d = [0 · · · ũ∗f,j · · · 0]T and X denotes the desired operating

state region. The objective of the above optimization problem is to find an operating point within

the desired operating state region such that the distance (measured by weighted Euclidean norm)

between the new operating point and the origin is minimized. We assume that the optimization

problem of Eq. 3.11 is always feasible which implies that we can always find the new operating

point xs and the corresponding new steady-state control input values us = [uT1s u
T
2s]

T .

Note that the proposed method is only one of many possible approaches to determine the

new operating point in the case of a fault. The basic idea of the proposed method is to find a

new operating point that stays as close as possible to the original operating point (i.e., the origin

x = 0).

Once we find the new operating point xs, we proceed to design the FTC strategies for the fault-

free DMPC system (see Eqs. 3.2-3.3) in the presence of actuator faults. In general, when there is a
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time

rE,p

δp,3

δp,4

δp,5

tf tδp,3

∆tp

∆td

td ts1tδp,4 tδp,5 ts2

∆tp2

Figure 3.1: An example of residual evolution after the occurrence of a fault at tf that affects
residual rE,p.

fault in the control system, it is impossible to carry out FTC unless there is another backup control

loop. However, in the fault-free DMPC system, because of the extra control flexibility brought into

the whole system by u2 (LMPC 2), it is possible in some cases to carry out FTC without activating

new control actuators.

When there is a persistent fault in the loop of u2 which is denoted d2, and the fault can be

detected and isolated in a reasonable time frame, it is possible to switch off the controller LMPC 2

and only use u1 in the control system. When LMPC 2 is switched off from the closed-loop system,

u2 is set by the fault value (i.e., u2 = d2); and in the DMPC scheme of Eqs. 3.2-3.3, only LMPC 1

is evaluated at each sampling time. In order to maintain the stability of the closed-loop system, the

design of LMPC 1 will need to be updated with the new operating point and its corresponding new

steady-state control input values (i.e., the cost function L(x, u1, u2) needs to be updated with xs and

us in a way such that L(xs, u1s, u2s) = 0), and updated with the fault magnitude information (i.e.,

u2 = d2); the design of h(x) also needs to be updated with the new steady-state information. The

control inputs determined by the updated LMPC 1 will be referred to as u′1(x). This FTC strategy

will maintain the closed-loop stability if implemented quickly such that the state of the closed-loop

system is still within the stability region of the backup controllers and parameter estimation is

sufficiently accurate, however, the performance of the closed-loop system may degrade to some

extent.

When there is a fault in the subset u12 which is denoted d1, the FTC strategy would shut

down the control action of u12 and reconfigure the DMPC algorithms to the backup DMPC of
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Eqs. 3.4-3.5 to manipulate u11 and u2 to control the process. In order to maintain the stability of

the closed-loop system, the designs of the two backup LMPCs and the design of h2(x) needs to be

updated with the new operating point and the corresponding new steady-state control input values;

as well as being updated with the fault magnitude information. The control inputs determined by

the updated designs will be referred to as u′′1(x) and u′′2(x).

However, when there is a fault in the subset u11, it is impossible to successfully carry out FTC

without activating backup actuators within the DMPC systems for the class of nonlinear systems

considered in this work.

The FTC switching rules for the system of Eq. 3.1 within the DMPC system of Eqs. 3.2-3.3 are

described as follows:

1. When a fault in the actuator associated with u2 is isolated at tf , the FTC switching rule is:

u1(t) =

 uL1 (x), t ≤ tf

u′1, t > tf
(3.12a)

u2(t) =

 uL2 (x), t ≤ tf

d2, t > tf
(3.12b)

2. When a fault in the actuator associated with u12 is detected at tf , the FTC switching rule

is:

u1(t) =


uL1 (x), t ≤ tf u′′11(x)

d1

 , t > tf

(3.13a)

u2(t) =


uL2 (x), t ≤ tf

u′′2(x), t > tf

(3.13b)

Remark 3.2. While in the present work, the full process state is assumed to be measured in real-

time, it would be possible to implement the proposed approach using partial measurements of the

full process state vector, provided that the available measurements in such a case allow to detect,

isolate and estimate the magnitude of the fault.
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Figure 3.2: Two CSTRs and a flash tank with recycle stream.

Remark 3.3. In the present work, a DMPC system involving two distributed LMPCs which are

solved in sequence is adopted to control the process of Eq. 3.1. The benefit of solving the two

LMPCs sequentially is that a single communication (i.e., LMPC 2 is solved first and sends its

optimal trajectory to LMPC 1 which then calculates its own trajectory) leads to control actions

that guarantee closed-loop stability due to the Lyapunov constraints while simultaneously solving

LMPC 1 and LMPC 2 may require multiple communications between the two controllers to achieve

a similar performance level.

Remark 3.4. Because of the structure of the system considered, it is possible in general that the

origin is outside the accessible region of the system at the time of DMPC reconfiguration after fault

detection and isolation has occurred (i.e., the reconfigured DMPC cannot stabilize the closed-loop

system at the origin). What can be done and is done in this case in the present work (see next

section), is to reconfigure the backup control system to try to maintain the closed-loop system within

a region as close to the origin as possible.

3.5 Application to a reactor-separator process

3.5.1 Process description and modeling

The process considered in this study is a three vessel, reactor-separator system consisting of two

CSTRs and a flash tank separator as shown in Fig. 3.2. Its detailed description and modeling can

be found in [6]. Sensor and process noise were added to the simulations. The desired operating

steady-state is the unstable steady state, xs, whose values are shown in Table 3.1.
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For this process, we have two sets of manipulated inputs. The first set of manipulated inputs is

the heat injected to or removed from the three vessels, that is u1 = [Q1−Q1s Q2−Q2s Q3−Q3s]
T ;

the second set includes the inlet flow rate to vessel 2, that is u2 = F20−F20s. The variables Q1s, Q2s,

Q3s and F20s denote the steady-state input values of the inputs whose values are shown in Table 3.2.

The control inputs are subject to the constraints |Qi −Qis| ≤ umax
1 = 106 KJ/hr, (i = 1, 2, 3) and

|F20 − F20s| ≤ umax
2 = 5 m3/hr.

In the design of the fault free DMPC system for the process, we consider a quadratic Lyapunov

function V (x) = xTPx with P = diag([20 103 103 103 10 103 103 103 10

103 103 103]) and design the controller h(x) as three PI controllers with proportional gains Kp1 =

Kp2 = Kp3 = 8000 and integral time constants τI1 = τI2 = τI3 = 10 based on the measurements of

T1, T2 and T3, respectively. Note that, in the absence of process noise and measurement noise, this

design of h(x) manipulating u1 can stabilize the closed-loop system asymptotically without the use

of u2. Based on h(x) and V (x), we design LMPC 1 following Eq. 3.3 to determine u1 and LMPC 2

following Eq. 3.2 to determine u2. In the design of the LMPCs, the weighting matrices are chosen

to be Qc = P , R1 = diag([(5 5 5) ·10−12]) and R2 = 100. The horizon for the optimization problem

is N = 4 with a time step of ∆ = 0.05 hr.

In addition, the set of control inputs u1 can be divided into two subsets, u11 = [Q1 −Q1s Q3 −

Q3s]
T and u12 = Q2 −Q2s. The input combination u11 and u2 is able to stabilize the closed-loop

system which can be used as the input configuration of the backup DMPC system of Eqs. 3.4-3.5.

In order to design the backup DMPC, we need to design a second Lyapunov-based controller h2(x)

which manipulates u11 and u2. We also design h2 through PI control law with proportional gains

Kb
p1 = Kb

p2 = 8000, Kb
p3 = −0.3 and integral time constants τ bI1 = τ bI2 = τ bI3 = 10 based on the

measurements of T1, T3 and T2, respectively. The control design h2 can stabilize the closed-loop

system asymptotically with Q2 = 0 in the absence of process noise and measurement noise. In the

design of the backup DMPC system, we choose V2(x) = V (x).

In order to perform FDI for the reactor-separator system, we construct the FDI filters for the

states affected directly by the four manipulated inputs as in Eq. 3.6. The states affected directly

by the manipulated inputs are T1, CA2, CB2, CC2, T2 and T3. The FDI residuals take the following

52



form:

rTi(t) = |T̂i(t)− Ti(t)|, i = 1, 2, 3

rCi2(t) = |Ĉi2(t)− Ci2(t)|, i = A,B,C.
(3.14)

Based on these residuals, we design the EWMA residuals with λ = 0.5 and the sampling time

∆r = 0.005. The mean values and standard deviations of the EWMA residuals are shown in

Table 3.3.

We consider two different faults in the following simulations. First, we consider a fault in the

heat input/removal actuator to vessel 2, that is a fault in Q2. Because Q2 only affects the state

T2 directly and all the measurements are continuously available, when there is an actuator fault

in Q2, only the residual corresponding to T2 exceeds its threshold. The second fault we consider

is a fault in the inlet flow actuator to vessel 2, that is a fault in F20. Because the control action

F20 affects directly the states T2, CA2, CB2 and CC2, when there is an actuator fault in F20, more

than one of the residuals will exceed their thresholds. In the simulations, ∆td = 36 s = 0.01 hr,

w = [4 3 3; 2 2 2] and ∆e = 0.005 hr.

3.5.2 Simulation Results

Four different simulation sets are presented to demonstrate the merits of isolating by using the

adaptive windows based on EWMA residuals. For each simulation, the plant is initialized at the

desired steady-state xs (see Table 3.1) and simulated to 5.0 hr with a fault being triggered at

1.050hr. Process and measurement noise is applied to the plant.

The first case considered triggers a small magnitude Q2 fault that will demonstrate longer isola-

tion windows to minimize false alarms along with a quicker response since fault detection/isolation

begins tracking the potential fault sooner. The second and third case will demonstrate the quick

detection and isolation of a large magnitude Q2 fault using adaptive windows in comparison to an

FDI scheme using fixed isolation times. The fourth case will demonstrate an F20 small magnitude

fault.

In the first set of simulations, a Q2 fault with a magnitude of 15% of umax
1 is triggered at 1.050 hr

(we will refer to it as “small” Q2 fault). From the design of the system, the Q2 fault directly affects

the temperature in vessel 2 where we expect only the residual for T2 to deviate. When the residual
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Figure 3.3: Case 1: Q2 “small” fault is isolated using longer waiting time calculated from the
residual change of T2. rE,T2 (top left plot) exceeds σT2,3 at 1.065 hr and then exceeds σT2,4 where
the fault isolation time is set to 3.6 min. When rE,T2 further exceeds σT2,5 at 1.080 hr, the waiting
time is updated to 36 sec. The fault is isolated and estimated as 18.5 KJ/hr (actual 20.0 KJ/hr)
at 1.090 hr
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Figure 3.4: Case 1: Q2 “small” fault is isolated and control system is reconfigured to stabilize the
closed-loop system - Concentrations. Note the new steady state values and scale.
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Figure 3.5: Case 1: Q2 “small” fault is isolated and control system is reconfigured to stabilize the
closed-loop system - Temperatures.

for T2, rE,T2 , (see top left plot of Fig. 3.3) exceeds a chosen confidence level (i.e., its first threshold

σT2,3) at 1.065 hr, the FDI system begins monitoring the rate of change of the T2 residual. The

residual rE,T2 exceeds its second threshold σT2,4 at 1.075 hr. This fault is confirmed and declared

at time 1.085 hr after the waiting time ∆td = 0.01 hr. At the same time 1.075 hr, a fault isolation

window of 3.6 min = 0.1 hr is calculated based on the rate of change of rE,T2 to ensure proper

isolation of the fault. However, because rE,T2 deviates quickly and exceeds σT2,5 at 1.080 hr, the

isolation window is updated to 36 sec = 0.01 hr and the Q2 fault is isolated at 1.090 hr. The fault

is estimated at 18.5 KJ/hr (actual fault value is 20 KJ/hr). The fault tolerant control system

reconfigures the control system, which is able to stabilize the closed-loop system near the target

steady state by 1.500 hr as shown in the concentration profiles in Fig. 3.4 and the temperature

profiles in Fig. 3.5.

In the second case, a Q2 fault is set to a magnitude of 80% of umax
1 and is triggered at 1.050 hr

(we will refer to it as the “large” Q2 fault). The larger Q2 fault will demonstrate the FDI system’s

quicker response and improved robustness when used in conjunction with fault tolerant control. In

Fig. 3.7, the “large” fault compared to a “small” fault of case 1 (Fig. 3.3) causes the residual to

deviate much quicker with the FDI system beginning to monitor at 1.060 hr when rT2 immediately
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Figure 3.6: Case 1: Q2 “small” fault is isolated and control system is reconfigured to stabilize the
closed-loop system - Control actions.
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Figure 3.7: Case 2: Q2 “large” fault is isolated using a shorter waiting time based on residual
change of T2. rE,T2 (top left plot) immediately exceeds σT2,5 in a single measurement update at
1.060 hr. The calculated waiting time is 36 sec. The fault is estimated as 88 KJ/hr (actual
80 KJ/hr) and FTC is implemented at 1.070 hr
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Figure 3.8: Case 2: Q2 “large” fault is isolated and control system is reconfigured to stabilize the
closed-loop system - Concentrations. Note the new steady state values and scale.

exceeds σT2,5 and an isolation window of 36 s is calculated. The fault is declared and isolated

at 1.070 hr soon after the rE,T2 exceeded σT2,5, and the fault is estimated as 88 KJ/hr (actual

80 KJ/hr). Figures 3.8 and 3.9 show that the FTC system is able to stabilize the system at a new

steady-state after reconfiguration at 1.070 hr.

The purpose of the third case is to better illustrate the need for variable windows and minimum

waiting times for proper isolation. In the third case we trigger an identical Q2 fault as in case 2

with the exception that the FDI system uses fixed isolation windows. Similarly, when rE,T2 first

exceeds σT2,5 at 1.060 hr, the isolation system monitors the remaining residuals for a matching

fault signature over a fixed window of 4.8 min. At the end of the fixed window at 1.135 hr, the

FTC system (identical to that of case 2) reconfigures the DMPC system with a Q2 fault estimate of

89 KJ/hr (actual 80 KJ/hr) and is unable to stabilize the system due to the plant state having left

the stability region of the reconfigured control system. Note that after fault isolation the residuals

are no longer used.

The fourth case involves an F20 fault whose fault signature includes rE,T2 and at least one other

concentration residual (rE,CA2 , rE,CB2 , rE,CC2). In this case, an F20 fault occurs with a magnitude

of 17% of umax
2 . In Fig. 3.14, the T2 residual exceeds σT2,3 at 1.100 hr while the residual for
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Figure 3.9: Q2 “large” fault is isolated and control system is reconfigured to stabilize the closed-loop
system - Temperatures.
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Figure 3.10: Q2 “large” fault is isolated and control system is reconfigured to stabilize the closed-
loop system - Control actions.
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Figure 3.11: Case 3: Same fault conditions as in case 2, i.e., Q2 “large” fault, using fixed isolation
time. rE,T2 immediately exceeding σT2,5 at 1.060 hr, but the isolation windows is set to worst
case condition of 4.8 min. The fault is isolated at 1.135 hr and estimated as 89 KJ/hr (actual
80 KJ/hr) but the FTC is unable to stabilize the closed-loop system.

Table 3.1: The desired operating steady-state xs.

T1 CA1 CB1 CC1

370 [K] 3.32 [kmol/m3] 0.17 [kmol/m3] 0.04 [kmol/m3]

T2 CA2 CB2 CC2

435 [K] 2.75 [kmol/m3] 0.45 [kmol/m3] 0.11 [kmol/m3]

T3 CA3 CB3 CC3

435 [K] 2.88 [kmol/m3] 0.50 [kmol/m3] 0.12 [kmol/m3]

concentration of component B in the second tank exceeds σCB2,4 at 1.105 hr. A fault is declared

at 1.115 hr when rE,CB2 stays above σCB2,4 for 0.01 hr. A fault isolation window of 4.8 min is

calculated at 1.105 hr. However, within the isolation window, rE,CB2 exceeds σCB2,5 at 1.120 hr

and a new isolation window of 36 sec is calculated. At the end of the new isolation window (i.e.,

t = 1.130 hr), no matching fault signature is found and the FDI system continues monitoring the

residuals until 1.150 hr a matching fault signature is found when rE,T2 exceeds σT2,5 at 1.140 hr

and stays above it for 0.01 hr. The FTC is implemented once the fault is isolated with a fault

estimate 1.08 m3/hr (actual 0.85 m3/hr)
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Figure 3.12: Case 3: Same fault conditions as in case 2, i.e., Q2 “large” fault, using fixed isolation
time. The control system is reconfigured at 1.135 hr and is unable to stabilize the closed-loop
system - Concentrations.
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Figure 3.13: Case 3: Same fault conditions as in case 2, i.e., Q2 “large” fault, using a fixed isolation
time. The control system is reconfigured at 1.135 hr and is unable to stabilize the closed-loop
system - Temperatures.
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Figure 3.14: Case 4: F20 fault demonstrates FDI system with multiple residuals exceeding the
thresholds under small magnitude fault. The residual rT2 first exceeds σT2,3 at 1.100 hr and rCB2

exceeds σCB2,4 at 1.105 hr. A fault is declared at 1.115 hr and an isolation time window of 4.8 min
is calculated. A new fault isolation window of 36 sec is calculated when rCB2

exceeds σCB2,5 at
1.120 hr and at the end of the new isolation window, no matching fault signature is found. The FDI
system continues monitoring the residuals until 1.150 hr a matching fault signature is found. The
FTC is implemented once the fault is isolated with a fault estimate 1.08 m3/hr (actual 0.85 m3/hr).
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Figure 3.15: Case 4: F20 fault is isolated and control system is reconfigured to stabilize the closed-
loop system - Concentrations.
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Figure 3.16: Case 4: F20 fault is isolated and control system is reconfigured to stabilize the closed-
loop system - Temperatures.
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Figure 3.17: Case 4: F20 fault is isolated and control system is reconfigured to stabilize the closed-
loop system - Control actions.

Table 3.2: The steady-state input values.

Q1s Q2s Q3s F20s

0 [KJ/hr] 0 [KJ/hr] 0 [KJ/hr] 5 [m3/hr]
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Table 3.3: EWMA Residual Means and Standard Deviations.

r̄T2 r̄CA2
r̄CB2

r̄CC2

0.664900 0.013944 0.003421 0.003980

sT2 sCA2
sCB2

sCC2

0.464139 0.010351 0.002810 0.002960
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3.6 Conclusions

In the chapter, we developed a monitoring and reconfiguration system for a DMPC system in

the presence of control actuator faults taking advantage of both process models and process mea-

surements. Specifically, we first designed fault detection filters and corresponding filter residuals,

which are computed via EWMA method, to effectively detect actuator faults. Then, we proposed

a fault isolation approach which uses adaptive fault isolation time windows to quickly and accu-

rately isolate actuator faults and reduce the probability of false alarms. Subsequently, we designed

appropriate FTC strategies to handle the actuator faults by reconfiguring the DMPC system and

maintain the closed-loop system state within a desired operating region. The applicability and ef-

fectiveness of the proposed approach were illustrated via extensive simulations based on a nonlinear

reactor-separator process example.
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Chapter 4

Fault Detection and Isolation and

Fault Tolerant Control of a Catalytic

Alkylation of Benzene Process

4.1 Introduction

In this chapter, we focus on the application of an integrated fault detection, isolation and fault

tolerant control (FDIFTC) framework to a catalytic alkylation of benzene process. We consider

that the catalytic alkylation of benzene process is controlled by a distributed model predictive

control (DMPC) system and is subjected to unknown, persistent actuator faults. The FDIFTC

system monitors closed-loop process residuals in order to detect and isolate a faulty actuator. After

isolation of an actuator fault, the FDIFTC system estimates the fault magnitude, recalculates a

new optimal operating point, and ultimately reconfigures the DMPC system to maintain stability

of the process in an optimal manner. Extensive simulations are carried out to demonstrate the

performance of the FDIFTC system from closed-loop stability and performance points of view.
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Figure 4.1: Process flow diagram of alkylation of benzene.

4.2 Description of the alkylation of benzene process

The process of alkylation of benzene with ethylene to produce ethylbenzene is widely used in the

petrochemical industry. Dehydration of the product produces styrene, which is the precursor to

polystyrene and many copolymers. The process model developed in this section is based on these

references [16, 21, 38, 1, 56] and details can be found in [24]. In the remainder, we review this model

for completeness of the presentation and of the results of this work. More specifically, the process

considered in this work consists of four continuously stirred tank reactors (CSTRs) and a flash

tank separator, as shown in Fig. 4.1. The CSTR-1, CSTR-2 and CSTR-3 are in series and involve

the alkylation of benzene with ethylene. Pure benzene is fed from stream F1 and pure ethylene

is fed from streams F2, F4 and F6. Two catalytic reactions take place in CSTR-1, CSTR-2 and

CSTR-3. Benzene (A) reacts with ethylene (B) and produces the required product ethylbenzene

(C) (reaction 1); ethylbenzene can further react with ethylene to form 1,3-diethylbenzene (D)

(reaction 2) which is the byproduct. The effluent of CSTR-3, including the products and leftover

reactants, is fed to a flash tank separator, in which most of benzene is separated overhead by
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vaporization and condensation techniques and recycled back to the plant and the bottom product

stream is removed. A portion of the recycle stream Fr2 is fed back to CSTR-1 and another portion

of the recycle stream Fr1 is fed to CSTR-4 together with an additional feed stream F10 which

contains 1,3-diethylbenzene from further distillation process that we do not consider in this example.

In CSTR-4, reaction 2 and catalyzed transalkylation reaction in which 1,3-diethylbenzene reacts

with benzene to produce ethylbenzene (reaction 3) takes place. All chemicals left from CSTR-4

eventually pass into the separator. All the materials in the reactions are in liquid phase due to

high pressure. The dynamic equations describing the behavior of the process, obtained through

material and energy balances under standard modeling assumptions, are shown below:

dCA1

dt
=
F1CA0 + Fr2CAr − F3CA1

V1
− r1(T1, CA1, CB1)

dCB1

dt
=
F2CB0 + Fr2CBr − F3CB1

V1
− r1(T1, CA1, CB1)− r2(T1, CB1, CC1)

dCC1

dt
=
Fr2CCr − F3CC1

V1
+ r1(T1, CA1, CB1)− r2(T1, CB1, CC1)

dCD1

dt
=
Fr2CDr − F3CD1

V1
+ r2(T1, CB1, CC1)

dT1

dt
=
Q1 + F1CA0HA(TA0) + F2CB0HB(TB0)

A,B,C,D∑
i

Ci1CpiV1

+

A,B,C,D∑
i

(Fr2CirHi(T4)− F3Ci1Hi(T1))

A,B,C,D∑
i

Ci1CpiV1

+
(−∆Hr1)r1(T1, CA1, CB1)(−∆Hr2)r2(T1, CB1, CC1)

A,B,C,D∑
i

Ci1Cpi

dCA2

dt
=
F3CA1 − F5CA2

V2
− r1(T2, CA2, CB2)

(4.1a)
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dCB2

dt
=
F3CB1 + F4CB0 − F5CB2

V2
− r1(T2, CA2, CB2)− r2(T2, CB2, CC2)

dCC2

dt
=
F3CC1 − F5CC2

V2
+ r1(T2, CA2, CB2)− r2(T2, CB2, CC2)

dCD2

dt
=
F3CD1 − F5CR2

V2
+ r2(T2, CB2, CC2)

dT2

dt
=
Q2 + F4CB0HB(TB0)

A,B,C,D∑
i

Ci2CpiV2

+

A,B,C,D∑
i

(F3Ci1Hi(T1)− F5Ci2Hi(T2))

A,B,C,D∑
i

Ci2CpiV2

+
(−∆Hr1)r1(T2, CA2, CB2)(−∆Hr2r2)(T2, CA2, CB2)

A,B,C,D∑
i

Ci2Cpi

dCA3

dt
=
F5CA2 − F7CA3

V3
− r1(T3, CA3, CB3)

dCB3

dt
=
F5CB2 + F6CB0 − F7CB3

V3
− r1(T3, CA3, CB3)− r2(T3, CB3, CC3)

dCC3

dt
=
F5CC2 − F7CC3

V3
+ r1(T3, CA3, CB3)− r2(T3, CB3, CC3)

dCD3

dt
=
F5CD2 − F7CD3

V3
+ r2(T3, CB3, CC3)

dT3

dt
=
Q3 + F6CB0HB(TB0)

A,B,C,D∑
i

Ci3CpiV3

+

A,B,C,D∑
i

(F5Ci2Hi(T2)− F7Ci3Hi(T3))

A,B,C,D∑
i

Ci3CpiV3

+
(−∆Hr1)r1(T3, CA3, CB3)(−∆Hr2)r2(T3, CB3, CC3)

A,B,C,D∑
i

Ci3Cpi
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dCA4

dt
=
F7CA3 + F9CA5 − FrCAr − F8CA4

V4

dCB4

dt
=
F7CB3 + F9CB5 − FrCBr − F8CB4

V4

dCC4

dt
=
F7CC3 + F9CC5 − FrCCr − F8CC4

V4

dCD4

dt
=
F7CD3 + F9CD5 − FrCDr − F8CD4

V4

dT4

dt
=

Q4 +
A,B,C,D∑

i
(F7Ci3Hi(T3) + F9Ci5Hi(T5))

A,B,C,D∑
i

Ci4CpiV4

+

A,B,C,D∑
i

(−MiHi(T4)− F8Ci4Hi(T4)−MiHvapi)

A,B,C,D∑
i

Ci4CpiV4

dCA5

dt
=
Fr1CAr − F9CA5

V5
− r3(T5, CA5, CD5)

dCB5

dt
=
Fr1CBr − F9CB5

V5
− r2(T5, CB5, CC5)

dCC5

dt
=
Fr1CCr − F9CC5

V5
− r2(T5, CB5, CC5)

+ 2r3(T5, CA5, CD5)

dCD5

dt
=
Fr1CDr + F10CD0 − F9CD5

V5

+ r2(T5, CB5, CC5)− r3(T5, CA5, CD5)

dT5

dt
=
Q5 + F10CD0HD(TD0)

A,B,C,D∑
i

Ci5CpiV5

+

A,B,C,D∑
i

(Fr1CirHi(T4)− F9Ci5Hi(T5))

A,B,C,D∑
i

Ci5CpiV5

+
(−∆Hr2)r2(T5, CB5, CC5)(−∆Hr3)r3(T5, CA5, CD5)

A,B,C,D∑
i

Ci5Cpi
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where r1, r2 and r3 are the reaction rates of reactions 1, 2 and 3 respectively and Hi, i =

A, B, C, D, are the enthalpies of the reactants. The reaction rates are related to the concentrations

of the reactants and the temperature in each reactor as follows:

r1(T,CA, CB) = 0.0840e
−9502
RT C0.32

A C1.5
B (4.4)

r2(T,CB, CC) =
0.0850e

−20643
RT C2.5

B C0.5
C

(1 + kEB2CD)
(4.5)

r3(T,CA, CD) =
66.1e

−61280
RT C1.0218

A CD

(1 + kEB3CA)
(4.6)

where:

kEB2 = 0.152e
−3933
RT (4.7)

kEB3 = 0.490e
−50870

RT . (4.8)

The heat capacities of the species are assumed to be constants and the molar enthalpies have a

linear dependence on temperature as follows:

Hi(T ) = Hiref + Cpi(T − Tref ), i = A,B,C,D (4.9)

where Cpi, i = A, B, C, D are heat capacities.

The model of the flash tank separator is developed under the assumption that the relative

volatility of each species has a linear correlation with the temperature of the vessel within the

operating temperature range of the flash tank, as shown below:

αA = 0.0449T4 + 10 (4.10)

αB = 0.0260T4 + 10 (4.11)

αC = 0.0065T4 + 0.5 (4.12)

αD = 0.0058T4 + 0.25 (4.13)

where αi, i = A, B, C,D, represent relative volatility. It has also been assumed that there is a

negligible amount of reaction taking place in the separator and a fraction of the total condensed
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overhead flow is recycled back to the reactors. The following algebraic equations model the com-

position of the overhead stream relative to the composition of the liquid holdup in the flash tank:

Mi = k

αi(F7Ci3 + F9Ci5)
A,B,C,D∑

j
(F7Cj3 + F9Cj5)

A,B,C,D∑
j

αj(F7Cj3 + F9Cj5)

, i = A,B,C,D (4.14)

where Mi, i = A, B, C, D are the molar flow rates of the overhead reactants and k is the fraction of

condensed overhead flow recycled to the reactors. Based on Mi, i = A, B, C, D, we can calculate

the concentration of the reactants in the recycle streams as follows:

Cir =
Mi

A,B,C,D∑
j

Mi/Cj0

, i = A,B,C,D (4.15)

where Cj0, j = A,B,C,D, are the mole densities of pure reactants. The condensation of vapor

takes place overhead, and a portion of the condensed liquid is purged back to separator to keep

the flow rate of the recycle stream at a fixed value. The temperature of the condensed liquid is

assumed to be the same as the temperature of the vessel.

The definitions for the variables used in the above model can be found in Table 4.1, with the

parameter values given in Table 4.2.

Each of the tanks has an external heat/coolant input. The manipulated inputs to the process

are the heat injected to or removed from the five vessels, Q1, Q2, Q3, Q4 and Q5, and the feed

stream flow rates to CSTR-2 and CSTR-3, F4 and F6.

The states of the process consist of the concentrations of A, B, C, D in each of the five vessels

and the temperatures of the vessels. The state of the process is assumed to be available continuously

to the controllers. We consider a stable steady state (operating point), xs, of the process which

is defined by the steady-state inputs Q1s, Q2s, Q3s, Q4s, Q5s, F4s and F6s which are shown in

Table 4.3. The steady-state temperatures in the five vessels are the following:

T1s = 477.2 K, T2s = 476.9 K, T3s = 473.4 K,T4s = 470.6 K, T5s = 478.2 K.
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Table 4.1: Process variables

CA1, CB1, CC1, CD1 Concentrations of A, B, C, D in CSTR-1
CA2, CB2, CC2 ,CD2 Concentrations of A, B, C, D in CSTR-2
CA3, CB3, CC3, CD3 Concentrations of A, B, C, D in CSTR-3
CA4, CB4, CC4, CD4 Concentrations of A, B, C, D in separator
CA5, CB5, CC5, CD5 Concentrations of A, B, C, D in CSTR-4
CAr, CBr, CCr, CDr Concentrations of A, B, C, D in Fr

T1, T2, T3, T4, T5 Temperatures in each vessel
Tref Reference temperature
F3, F5, F7, F8, F9 Effluent flow rates from each vessel
F1, F2, F4, F6, F10 Feed flow rates to each vessel
Fr, Fr1, Fr2 Recycle flow rates
HvapA, HvapB Enthalpies of vaporization of A, B
HvapC , HvapD Enthalpies of vaporization of C, D
HAref , HBref Enthalpies of A, B at Tref

HCref , HDref Enthalpies of C, D at Tref

∆Hr1, ∆Hr2, ∆Hr3 Heat of reactions 1, 2 and 3
V1, V2, V3, V4, V5 Volume of each vessel
Q1, Q2, Q3, Q4, Q5 External heat/coolant inputs to each vessel
CpA, CpB, CpC , CpD Heat capacity of A, B, C, D
αA, αB, αC , αD Relative volatility of A, B, C, D
CA0, CB0, CC0, CD0 Molar densities of pure A, B, C, D
TA0, TB0, TD0 Feed temperatures of pure A, B, D
k Fraction of overhead flow recycled to the reactors
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Table 4.2: Parameter values

F1 = 7.1× 10−3 m3/s Fr = 0.012 m3/s
F2 = 8.697× 10−4 m3/s Fr1 = 0.006 m3/s
Fr2 = 0.006 m3/s V1 = 1 m3

F10 = 2.31× 10−3 m3/s V2 = 1 m3

HvapA = 3.073× 104 J/mole V3 = 1 m3

HvapB = 1.35× 104 J/mole V4 = 3 m3

HvapC = 4.226× 104 J/mole V5 = 1 m3

HvapD = 4.55× 104 J/mole CpA = 184.6 J/mole ·K
∆Hr1 = −1.536× 105 J/mole CpB = 59.1 J/mole ·K
∆Hr2 = −1.118× 105 J/mole CpC = 247 J/mole ·K
∆Hr3 = 4.141× 105 J/mole CpD = 301.3 J/mole ·K
CA0 = 1.126× 104 mole/m3 Tref = 450 K
CB0 = 2.028× 104 mole/m3 TA0 = 473 K
CC0 = 8174 mole/m3 TB0 = 473 K
CD0 = 6485 mole/m3 TD0 = 473 K
k 0.8

Table 4.3: Steady-state input values for xs.

Q1s -4.4×106 [J/s] Q2s -4.6×106 [J/s]
Q3s -4.7×106 [J/s] Q4s 9.2×106 [J/s]
Q5s 5.9×106 [J/s] F4s, F6s 8.697×10−4 [m3/s]

The process will be under the control of three distributed Lyapunov-based model predictive

controllers. The first distributed controller (LMPC 1) will control the values of Q1, Q2 and Q3,

the second distributed controller (LMPC 2) will decide the values of Q4 and Q5, and the third

distributed controller (LMPC 3) will decide the values of F4 and F6. The manipulated inputs for

LMPC 1, 2, and 3 will use deviation variables and be described by the sets uT1 = [u11 u12 u13] =

[Q1 − Q1s Q2 − Q2s Q3 − Q3s], u
T
2 = [u21 u22] = [Q4 − Q4s Q5 − Q5s] and uT3 = [u31 u32] =

[F4 − F4s F6 − F6s] which are subject to the constraints shown in Table 4.4.

The alkylation of benzene process model of Eq. 4.1 belongs to the following class of nonlinear

systems

ẋ(t) = f(x(t)) +

3∑
i=1

gi(x(t))ui(t) (4.16)

where x(t) ∈ R25 denotes the vector of process state variables. The explicit expressions of f ,
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Table 4.4: Manipulated input constraints.

|u11| ≤ 7.5× 105 [J/s] |u1i| ≤ 5× 105 [J/s], (i = 2, 3)
|u21| ≤ 6× 105 [J/s] |u22| ≤ 5× 105 [J/s]

|u31| ≤ 4.93× 10−5 [m3/s] |u32| ≤ 4.93× 10−5 [m3/s]

gi (i = 1, 2, 3) are omitted for brevity. We assume that the state x of the system is sampled

synchronously and the time instants at which state measurements are sampled is indicated by the

time sequence {tk≥0} with tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time and ∆ = 15 sec is

the sampling time.

n the control of the process, u1 and u2 are necessary to keep the stability of the closed-loop

system, while u3 can be used as an extra manipulated input to improve the closed-loop performance.

We can design a Lyapunov-based controller h(x) = [h1(x) h2(x) h3(x)]
T to stabilize the closed-loop

process. Specifically, h1(x) and h2(x) are designed as follows [47]:

hi(x) =

 −LfV+
√

(LfV )2+(LgiV )4

(LgiV )2
LgiV if LgiV ̸= 0

0 if LgiV = 0

where i = 1, 2, LfV = ∂V
∂x f(x) and LgiV = ∂V

∂x gi(x) denote the Lie derivatives of the scalar

function V with respect to the vector fields f and gi (i = 1, 2), respectively. The controller

h3(x) is chosen to be h3(x) = [0 0]T because the input set u3 is not needed to stabilize the

process. We consider a Lyapunov function V (x) = xTPx with P being the following weight matrix:

P = diag([1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10])∗. The values of the weights in P

have been chosen in such a way that the Lyapunov-based controller h(x) stabilizes the closed-loop

system asymptotically and provides good closed-loop performance.
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Figure 4.2: Sequential distributed LMPC for the catalytic alkylation of benzene process.

4.3 FDIFTC system design

4.3.1 Fault-free DMPC system design

In this section, we design the fault-free control system for the alkylation process following the se-

quential distributed Lyapunov-based MPC (LMPC) approach described in [25, 24]. Specifically, for

the alkylation process, we design three LMPC controllers to compute u1, u2, and u3, respectively. In

the sequential distributed control scheme, the distributed LMPCs communicate in a one-directional

manner as shown in Fig. 4.2 in which at each sampling time tk: 1) all LMPCs receive the state

measurement x(tk) from the sensors; 2) LMPC 3 evaluates the optimal input trajectory of u3 and

sends it future input information to LMPC 2; 3) LMPC 2 evaluates its optimal input trajectory of

u2 and sends its own and LMPC 3’s future input information to LMPC 1; 4) LMPC 1 evaluates its

optimal input trajectory of u1; and 5) the first step input values of u is sent to its corresponding

actuators and the process is repeated at every sampling time.

The sequential DMPC is based on h(x) and the Lyapunov function V (x). Specifically, the

∗diag(v) denotes a matrix with its diagonal elements being the elements of vector v and all the other elements
being zeros.
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distributed LMPCs are based on the following optimization problem:

min
ui∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) +

3∑
i=1

ui(τ)
TRciui(τ)]dτ (4.17a)

s.t. ˙̃x(τ) = f(x̃(τ)) +

3∑
i=1

gi(x̃(τ))ui(τ) (4.17b)

uj(τ) = hk(x̃(b∆)),∀ τ ∈ [b∆, (b+ 1)∆), b = 0, . . . , N − 1,

j = 1, . . . , i− 1 (4.17c)

uj(τ) = u∗j (τ |tk), j = i+ 1, . . . , 3 (4.17d)

x̃(0) = x(tk) (4.17e)

ui(τ) ∈ Ui (4.17f)

∂V (x)

∂x
gi(x(tk))ui(0) ≤

∂V (x)

∂x
gi(x(tk))hi(x(tk)) (4.17g)

where S(∆) is the family of piece-wise continuous function with sampling time ∆, the prediction

horizon N = 3, x̃ is the predicted system trajectory, u∗j is the future optimal input trajectory

calculated by LMPC j, Qc and Rci are positive definite weighting matrices with the following values:

Qc = diag(Qv) with Rc1 = diag([10−8 10−8 10−8]), Rc2 = diag([10−8 10−8]), Rc3 = diag([1 1]) and

Qv = [1 1 1 1 103 1 1 1 1 103 10 10 10 10 104 1 1 1 1 103 1 1 1 1 103]

.

The optimal solution to this optimization problem is denoted by u∗i (τ |tk), i = 1, 2, 3, which is

defined for τ ∈ [0, N∆]. Note that in this optimization problem, the constraint of Eq. 4.17c is only

active for LMPC 3 and LMPC 2; and the constraint of Eq. 4.17d is only active for LMPC 2 and

LMPC 1. The constraint of Eq. 4.17g is used to make sure that each controller has a minimum

contribution to the decrease rate of the Lyapunov function which is used to guarantee the closed-

loop stability. Once all optimization problems are solved, the manipulated inputs of the distributed

LMPC system are defined as follows:

uLi (t|x) = u∗i (t− tk|tk), i = 1, 2, 3,∀t ∈ [tk, tk+1).
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Table 4.5: Fault signature shows which residuals are triggered by faults in particular actuators.
Note that some signatures overlap (i.e., Q2 fault signature overlaps with F4 fault signature and Q3

fault signature overlaps with F6 fault signature)

Actuator Fault Signature

Q1 T1

Q2 T2

Q3 T3

Q4 T4

Q5 T5

F4 T2, CA2, CB2, CC2

F6 T3, CA3, CB3, CC3

The alkylation process under this DMPC scheme with inputs defined by ui = uLi , i = 1, 2, 3,

maintains the same stability region as the Lyapunov-based control law h [25, 24].

4.3.2 Fault Detection and Isolation

We consider control actuator faults that can be detected and isolated by an appropriate nonlinear

dynamic filter by observing the evolution of the closed-loop system state. This consideration

requires that a fault in a control actuator influences the evolution of at least one of the states. In

order to isolate the occurrence of a fault, it is further required that the control actuator in question

is the only one influencing a certain set of the system states (i.e., each fault has a unique fault

signature), see Table 4.5. For more discussions on systems having isolable structures, see [34, 36].

The DMPC system of Eq. 4.17 is the control configuration for the fault-free system of Eq. 4.16.

We first design an FDI scheme to detect faults in this control system. In this FDI scheme, a filter

is designed for each state and the design of the filter for the pth, p = 1, . . . , 25, state in the system

state vector x is as follows:

˙̂xp(t) = fp(Xp) +

3∑
i=1

gip(Xp)u
L
i (Xp) (4.18)

where x̂p is the filter output for the pth state, fp and gip are the pth components of the vector

functions f and gi, respectively. With a slight abuse of notation, we have dropped the time index

in Eq. 4.18 in the control functions and denote uLi (t|x) with uLi (x), in order to simplify the FDI
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definitions. The state Xp is obtained from both the actual state measurements, x, and the filter

output, x̂p, as follows:

Xp(t) = [x1(t), . . . , xp−1(t), x̂p(t), xp+1(t), . . . , x25(t)]
T .

Note that in the filter of Eq. 4.18, the control inputs uLi (Xp) are determined by the same LMPC

of Eq. 4.17 as applied to the actual process, and are updated at every sampling time (i.e., the

sampling time instants {tk≥0}).

The states of the FDI filters are initialized at t = 0 to the actual state values; that is, x̂p = xp.

The FDI filters are only initialized at t = 0 such that x̂p(0) = xp(0). The information generated

by the filters provides a fault-free estimate of the process at any time t and allows detection of the

faults. For each state associated with a filter, the FDI residual can be defined as:

rp(t) = |x̂p(t)− xp(t)|,

with p = 1, . . . , 25. The residual rp is computed continuously because x̂p(t) is known for all t and

the state measurement, x, is also available for all t. If no fault occurs, the filter states track the

system states. In this case, the dynamics of the system states and the FDI filter states are identical,

so rp(t) = 0 for all times. When there is a fault in the system, filter residuals affected directly by

the fault will deviate from zero soon after the occurrence of the fault. For more detailed discussion

on the properties of the filters, see [34].

Note that due to sensor measurement and process noise, the residuals will be nonzero even

without an actuator fault. This necessitates the use of fault detection thresholds so that a fault is

declared only when a residual exceeds a specific threshold value, σp. This threshold value is chosen

to avoid false alarms due to process and sensor measurement noise, but should still be sensitive

enough to detect faults in a timely manner so that effective fault-tolerant control can be performed.

The objective of the FDI scheme is to quickly detect an actuator fault when it occurs, and then

identify which of the possible different actuator faults has occurred. When a fault occurs, one or

more of the filter residuals will become nonzero. Once a residual (rp) is detected at time tσp , the

monitoring system will declare a fault alarm. In order to isolate a fault, the system must have an
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Figure 4.3: Sequential distributed LMPC with FDIFTC system.

isolable structure in which different faults have different fault signatures. In some cases the fault

signatures overlap such that a waiting time (∆ti) is used to confidently distinguish between fault

signatures by letting the fault propagate in the system (see Table 4.5 where a Q2 fault signature

overlaps with an F4 signature). ∆ti is chosen to achieve a trade off between quicker reconfiguration

and the need to confidently isolate a fault and is based on the worst case time needed for the slowest

actuator fault to develop its fault signature. If a fault is isolated, the FDIFTC system will send

the fault information and reconfiguration policy to the distributed controllers to activate the FTC

system as shown in Fig. 4.3.

4.3.3 Fault parameter estimation

After a fault has been isolated, the FTC system must know the magnitude of the fault in order

to target the corresponding new operating point and properly stabilize the system in the presence

of the fault. To simplify the description of the proposed method, we consider faults of constant

magnitudes in this work; however, faults with slowly time-varying values can be handled using the

proposed FDIFTC method in a straightforward manner.

When a residual (rp) exceeds its threshold (σp), we begin to collect the sampled system states

as well as the actual control inputs applied to the system. When the fault is confirmed and isolated,

a least square optimization problem is solved to estimate the magnitude of the fault based on the
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sampled system states and the actual control inputs. Specifically, we collect the sampled system

states, x(t), and record the actual control inputs (i.e., u1(t) = uL1 (t), . . . , u3(t) = uL3 (t)) applied

to the system from tσp to the fault isolation time (tisolate = tσp +∆ti). The magnitude of the fault

(denoted as d) is estimated by solving the following optimization problem:

min
d

M∑
i=0

(x(tf + i∆)− x̃(tf + i∆))2 (4.19a)

s.t. ˙̃x(t) = f(x̃(t)) + g(x̃(t))(uL(t) + ũ) (4.19b)

x̃(tf ) = x(tf ) (4.19c)

where ũ = [0 · · · d · · · 0]T is the fault vector, uL(t) = [uL1 (t)
T . . . uL3 (t)

T ]T is the actual control

inputs that have been applied to the closed-loop system from tσp to tisolate, M is the maximum

integer satisfying M∆ ≤ tisolate − tσp , and x(tσp) is the system state at the fault detection time.

The solution to the optimization problem of Eq. 4.19 is denoted by d∗, which is the estimate of the

actual fault from a least-square point of view.

4.3.4 FTC consideration and strategies

In order to carry out FTC, there must be a backup control configuration for the system under

consideration. For the alkylation process, the presence of the control action u3 brings extra control

flexibility to the closed-loop system which can be used to carry out FTC. From extensive simu-

lations, we found that the closed-loop process can also be stabilized using the manipulated input

sets {u11, u12, u2, u3} and {u1, u2, u31} when the faults in u13 and u32 are small enough such that

the new operating points are close enough to the original operating point. This fact can be taken

advantage of to design FTC systems for the alkylation process.

First, we discuss the case that there is a persistent fault d1 in u13. In this case, we need to

design a Lyapunov-based control law h2(x) which manipulates u11, u12, u2 and u3 to stabilize the

closed-loop process. The control law h2(x) n [47] and its expression is omitted for brevity. This

control law will be used in the backup distributed LMPC when the fault in u13 is detected and

isolated. We still design three LMPC controllers in the backup DMPC system. One LMPC is used

to manipulate u11 and u12, one for u2, and the third is used to manipulate u3. In this backup
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DMPC system, the three LMPCs coordinate their actions to maintain the closed-loop stability. We

refer to the LMPC manipulating u11 and u12 as the backup LMPC 1 and the LMPC manipulating

u2 and u3 as the backup LMPC 2 and 3, respectively. The three backup LMPCs are also evaluated

in sequence. Specifically, the backup LMPC 3 is designed as follows:

min
u3∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) +

3∑
i=1

ui(τ)
TRciui(τ)]dτ (4.20a)

˙̃x(τ) = f(x̃(τ)) +

3∑
i=1

gi(x̃(τ))ui(τ)

u2(τ) = h22(x̃(j∆)), (4.20b)

[u11(τ) u12(τ)]
T = h21(x̃(j∆)), (4.20c)

∀ τ ∈ [j∆, (j + 1)∆), j = 0, . . . , N − 1

u13(τ) = 0 (4.20d)

x̃(0) = x(tk) (4.20e)

u3(τ) ∈ U3 (4.20f)

∂V (x)

∂x
g3(x(tk))u3(0) ≤

∂V (x)

∂x
g3(x(tk))h23(x(tk)). (4.20g)

The solution to the optimization problem of Eq. 4.20 is denoted ub∗3 (t|tk). The backup LMPC 2
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optimizes u2 and is designed as follows:

min
u2∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) +

3∑
i=1

ui(τ)
TRciui(τ)]dτ (4.21a)

˙̃x(τ) = f(x̃(τ)) +

2∑
i=1

gi(x̃(τ))ui(τ)

+ g3(x̃(τ))u
b∗
3 (τ) (4.21b)

[u11(τ) u12(τ)]
T = h21(x̃(j∆)), ∀ τ ∈ [j∆, (j + 1)∆), (4.21c)

j = 0, . . . , N − 1 (4.21d)

u13(τ) = 0 (4.21e)

x̃(0) = x(tk) (4.21f)

u2(τ) ∈ U2 (4.21g)

∂V (x)

∂x
g2(x(tk))u2(0) ≤

∂V (x)

∂x
g2(x(tk))h22(x(tk)). (4.21h)

The solution to the optimization problem of Eq. 4.21 is denoted ub∗2 (t|tk). The backup LMPC 1

optimizes u11 and is designed as follows:

min
u1∈S(∆)

∫ N∆

0
[x̃(τ)TQcx̃(τ) +

3∑
i=1

ui(τ)
TRciui(τ)]dτ (4.22a)

˙̃x(t) = f(x̃(t)) + g1(x̃(t))[u11(t) u12(t) 0]
T +

3∑
i=2

gi(x̃(t))u
b∗
i (t) (4.22b)

x̃(tk) = x(tk) (4.22c)

u1(t) ∈ U1 (4.22d)

u13(t) = 0 (4.22e)

∂V2(x)

∂x
g1(x(tk))[u11(t) u12(t) 0]

T ≤ ∂V2(x)

∂x
g1(x(tk))[h21(x(tk))

T 0]T . (4.22f)

The solution to the optimization problem of Eq. 4.22 is denoted ub∗11(t|tk). The control inputs of
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the backup DMPC system are defined as follows:

[ub11(t) u
b
12(t)]

T = [ub∗11(t|tk) ub∗12(t|tk)], ∀t ∈ [tk, tk+1)

ub13(t) = 0, ∀t

ub2(t) = ub∗2 (t|tk), ∀t ∈ [tk, tk+1)

ub3(t) = ub∗3 (t|tk), ∀t ∈ [tk, tk+1)

The fault-free closed-loop system of Eq. 4.16 under the backup DMPC control with inputs

defined by u11 = ub11, u12 = 0, u2 = ub2, and u3 = ub3 maintains practical stability of the closed-loop

system because of the Lyapunov-based constraints of Eqs. 4.20g, 4.21h, and 4.22f [24].

When a fault in u13 is detected, isolated and the magnitude of the fault is estimated, suitable

FTC strategies can be carried out to keep the closed-loop system state within a desired operating

region. Because of the fault, the operating point of the fault-free system may not be achievable

because of the input constraints and the system structure. In this case, we may operate the system

at a new operating point within the desired operating region. To determine the new operating

point xs, we propose to solve an optimization problem. Specifically, when the fault is d∗1, the new

operating point, xs, is obtained by solving the following optimization problem:

min
xs,us

xTs Wxs (4.23a)

s.t. f(xs) + g(xs)(us + ũ) = 0 (4.23b)

us + ũ ∈ U (4.23c)

xs ∈ X (4.23d)

where W is a positive weighting matrix, ũ = [0 · · · d∗1 · · · 0]T and X denotes the desired operating

state-space region. The objective of the above optimization problem is to find an operating point

within the desired operating state space region such that the distance (measured by weighted

Euclidean norm) between the new operating point and the original (fault-free) operating point is

minimized. We assume that the optimization problem of Eq. 4.23 is always feasible which implies

that we can always find the new operating point xs and the corresponding new steady-state control

input values us = [uT1s u
T
2s u

T
3s]

T .
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Once the fault is isolated, the FTC strategy would shut down the control action of u13 and

reconfigure the DMPC algorithms of Eq. 4.17 to the backup DMPC of Eqs. 4.20-4.22 to manipulate

u11, u12, u2, and u3 to control the process. In order to maintain the stability of the closed-loop

system, the designs of the three backup LMPCs and the design of h2(x) needs to be updated with

the new operating point and the corresponding new steady-state control input values; as well as

being updated with the fault magnitude information. Note that the proposed method is only one

of many possible approaches to determine the new operating point in the case of a fault. The basic

idea of the proposed method is to find a new operating point that stays as close as possible to the

original operating point.

Next, we consider the case that there is a persistent fault d3 in u32. In this case, if the fault is

detected and isolated in a reasonable time frame, it is possible to switch off the faulty portion of

LMPC 3 and only use u1, u2, and u31 in the control system of Eq. 4.17. When u32 is switched off

from the closed-loop system, u32 is set to the fault value (i.e., u32 = d3). In order to maintain the

stability of the closed-loop system, the design of LMPC 1, 2, 3, and h(x) will be updated with the

new operating point, corresponding to the new steady-state control input values, and updated with

the fault magnitude information (i.e., u32 = d2). The control inputs determined by the updated

LMPC 1,2, and 3 will be referred to as u′1(x), u
′
2(x), and u′3(x). This FTC strategy will maintain

the closed-loop stability if implemented quickly enough such that the state of the closed-loop system

is still within the stability region of the backup controllers and parameter estimation is sufficiently

accurate, however, the performance of the closed-loop system may degrade to some extent.

However, when there is a fault in u11, or u12 or u2 or u31, it may be impossible to successfully

carry out FTC without activating backup actuators within the DMPC systems for the alkylation

process considered in this work.

The FTC switching rules for the alkylation process within the DMPC system of Eq. 4.17 are

described as follows:

1. When a fault in the actuator associated with u32 is isolated at tf , the FTC switching rule is:
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u1(t) =


uL1 (x), t ≤ tf

u′′1(x), t > tf

(4.24a)

u2(t) =


uL2 (x), t ≤ tf

u′′2(x), t > tf

(4.24b)

u3(t) =


uL3 (x), t ≤ tf u′′31(x)

d3

 , t > tf

(4.24c)

(4.24d)

2. When a fault in the actuator associated with u13 is detected at tf , the FTC switching rule

is:

u1(t) =



uL1 (x), t ≤ tf
ub11(x)

ub12(x)

d1

 , t > tf

(4.25a)

u2(t) =


uL2 (x), t ≤ tf

ub2(x), t > tf

(4.25b)

u3(t) =


uL3 (x), t ≤ tf

ub3(x), t > tf

(4.25c)

4.4 Simulation results

In this section, various simulations are presented with the goal of showing the abilities of the

fault detection/isolation and fault tolerant control system along with its limitations. First, we

demonstrate the closed-loop system poor performance upon the triggering of an actuator fault

with no fault tolerant control implemented. In the second simulation we again trigger the same
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fault and demonstrate the timely fault detection and isolation of the fault and triggering of the

fault tolerant control system to reconfigure the control system to maintain stability of the plant

with a persistent actuator fault present. Varying levels of recovery are possible after isolation of an

actuator fault depending on the robustness of the remaining control structure, and the speed and

flexibility of the FDI/FTC system.

4.4.1 No Fault Tolerant Control Implementation

The first two plots presented, show the trajectory of the plant under no-fault conditions. In Figs. 4.4

and 4.5 we see the plant’s temperatures (T ) and ethylene concentrations (CB) begin near the steady

state (dotted line) and are considered stabilized around the steady state by the 200 min mark. We

found that besides vessel temperature, focusing only on the ethylene concentration provided the

necessary confidence in demonstrating and isolating actuator faults for this particular plant. Since

in this particular process (see Table 4.5) the Q2 actuator and the F4 actuator partially overlap

in terms of their fault signatures since they both trigger the vessel 2 temperature residual (rT2)

and the difference being that the F4 also triggers the concentration residuals. Similarly a Q3 fault

overlaps with a F6 fault. In simulations ethylene (Cb) was consistently the first of the concentration

residuals to respond from a flow actuator fault (F2 and F4). As such it is sufficient to monitor the

temperatures and each vessel’s ethylene concentration in order to properly isolate an actuator fault.

In simulations where a fault is considered, the unknown actuator fault is triggered at the 200 min

mark and the fault is set to +50% of its maximum actuation, unless written otherwise. Noise was

introduced to the closed-loop system as process noise and measurement noise.

The first simulation considered has a fault triggered in the heat actuator of vessel 3 (Q3) that

shows the closed-loop system moving quickly away from the target steady-states in Fig. 4.6. The

Q3 actuator fault is triggered at 200 min and increased the heat delivered to vessel 3 where the

first residual to consistently exceed its threshold for ∆ti is vessel 3 temperature (rT3) at 202 min

shown in Fig. 4.7. The residual response is consistent with the plant model filter design where

only the filter states directly associated with the fault will show an immediate deviation as shown

in Eq. 4.1. Figure 4.6 shows the temperature in vessel 3 (T3) increasing beyond its target shortly

after initiation of the heat actuator fault and the fault manifesting in vessel 4 temperature after

the 310 min mark when no fault tolerant control is implemented. The final cost of the simulation
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Figure 4.4: Temperatures trajectories for the five vessels under normal fault free operation. Dotted
line represents target operating point. The process reaches steady-state conditions around 200 min.
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Figure 4.5: Trajectories of ethylene concentration (mole/m3) for the five vessels under normal fault
free operation. Dotted line represents target operating point. The process reaches steady-state after
200 min.
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Figure 4.6: Temperature trajectories of the five vessels after triggering a Q3 fault at time 200 min
with no fault tolerant control. Note that the vessel 3 disturbance eventually propagates downstream
to vessel 4 and 5 after 310 min and 360 min, respectively.

without fault tolerant control is 9.9 × 107 units.

4.4.2 FTC of a Q3 heat actuator fault

In the next example we look at how the fault tolerant control system responds to the same heat

actuator (Q3) fault at 200 min. The fault’s first appearance is most evident in the residual plot in

Fig. 4.8 where vessel 3 temperature residual spikes upward after 202 min (tσp). At this time the

fault isolation system performs two actions, first it begins monitoring the residuals for a consistent

fault signature where the appropriate residuals exceed their thresholds for a specified amount of
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Figure 4.7: Residual plots of key isolation residuals showing residual pattern upon triggering a
fault in the heat actuator to the third vessel (Q3) with no fault tolerant control. Note how only
the residual associated with the temperature of vessel three (rT3) is severely affected.
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time (∆ti) and the fault is isolated. The second action after detecting a possible fault is to begin

logging plant states and controller action in order for successful fault estimation to be achieved as

presented in Section 4.3.3. The isolation time (∆ti = 10 plantsteps = 150 sec) was determined

from various simulations by initiating a low magnitude fault and recording the necessary time for

a consistent fault signature. The value was chosen long enough to confidently isolate to a certain

degree of certainty and short enough so that the fault tolerant control system can stabilize the

plant by reconfiguring the control system while the plant remains in the stability region of the

reconfigured control system. A low magnitude fault was used as these typically have the slowest

propagation within the system and represents a worst case in terms of isolation time. In the event

of losing a fault signature (i.e., the corresponding residual recedes below the threshold) within the

isolation time ∆ti, the fault isolation process is reset.

At the end of the isolation time (tσp + ∆ti = 202 min + 150 sec = 205 min) the Q3 fault is

isolated and the magnitude is correctly estimated at 50% of maximum actuation. This information

is used to reconfigure the control system to account for the persistent disturbance. The successful

reconfiguration is obvious at the 205 min mark in Figs. 4.8 and 4.9 where the vessel three temper-

ature residual (rT3) dives down below the threshold and the temperature (T3) returns to its steady

state. But note that after isolation the residuals do not provide useful information unless further

reconfiguration strategies are built into the fault tolerant control system. The size of the small

spike in T3 is directly related to the isolation time but it is required in order to confidently isolate

when fault signatures have overlapping residual patterns. Reconfiguration in this case is due to the

flexibility in the control system to ramp up the F6 flow actuator to compensate for the problem

with Q3. The final cost of the simulation with fault tolerant control is 2.2 × 107 units.

4.4.3 FTC of an F4 flow actuator fault

In the very last example we look at a fault in the flow actuator to vessel two (F4) at 100% maximum

actuation which introduces pure ethylene (Cb) into vessel 2, with no fault tolerant control. Because

of the structure of the plant we expect the fault to affect more than one residual, in fact all residuals

associated with vessel 2. In Fig. 4.10, we see that the pattern of the residual for concentration of

ethylene in vessel 2 changes shortly after the fault is triggered in F4. In this example with no fault

tolerant control, the fault propagates and we see that the temperatures for tank 2 and 3 begin to
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Figure 4.8: Residual plots of key isolation residuals showing residual pattern upon triggering a fault
in the heat actuator to the third vessel (Q3) and using FTC at time 205 min. Note how residual
rT3 trajectory changes immediately after reconfiguration.
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Figure 4.9: Temperature trajectories of the five vessels after triggering a Q3 actuator fault at
200 min and achieving fault isolation at 205 min. The small peak above the threshold in T3 from
200− 210 min is the result of the actuator fault.
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change after 200 min in Fig. 4.11.

In the last set of figures we implement the appropriate FTC strategy after isolation of a flow

actuator fault in vessel 2 (F4). After the fault is triggered at 200 min the temperature in vessel

2 moves away from the target steady-state (Fig. 4.14). The first residual to trigger monitoring is

the ethylene concentration in tank 2 (rCB2
) at 200 min (Fig. 4.15). The fault is isolated and FTC

reconfiguration is initiated at time 203 min where we see that the vessel 2 temperature plot begin

to shift back towards the original steady-state as it did in Fig. 4.11. Comparing the temperatures

and ethylene concentration plots under fault tolerant control and no fault tolerant control, the

difference is minor. But comparing the cost for the no fault tolerant control simulation (fig. 4.12)

with a cost of 6.3 × 107 units and the fault tolerant control simulation (fig. 4.13) with a final cost

of 5.3 ×107 units shows a significant gain and is partly due to a reduction in wasted control action

(please compare Figs. 4.12 and 4.13).

In the case where an actuator fault occurs in vessel one, four, or five, the fault will be properly

isolated and estimated, but due to the plant structure, there does not exist a way to compensate

for the lost actuation and persistent disturbance. Also due to the persistent fault and the structure

of the process, the original target operating point is not accessible anymore, and the new target

steady-state is chosen as to remain as close to the original target with the persistent fault present.

The simulations were carried out using Java programming language on a Pentium 3.20 GHz

computer. The optimization problems were solved using the open source interior point optimizer

Ipopt [53].
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Figure 4.10: Residual plots after initiating a flow actuator fault in tank 2 (F4) with no fault tolerant
control. Note that this fault causes a shift in the residuals for tank 2 ethylene concentration at
200 min.
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Figure 4.11: Temperature trajectories of the five vessels after triggering a F4 fault at time 200 min
with no fault tolerant control.
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Figure 4.12: Manipulated input trajectories after initiating a flow actuator fault in tank 2 (F4)
with no fault tolerant control. Final cost 6.7 × 107 units. Units of F4 are m3/s and Q1, . . . , Q5

are J/s; all inputs are scaled to be in the range of [−1, 1] using the values of Table 4.4.
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Figure 4.13: Manipulated input trajectories after initiating a flow actuator fault in tank 2 (F4)
with fault tolerant control. Final cost 5.3 × 107 units. Units of F4 are m3/s and Q1, . . . , Q5 are
J/s; all inputs are scaled to be in the range of [−1, 1] using the values of Table 4.4.
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Figure 4.14: Temperature trajectories of the five vessels after triggering a F4 fault at time 200 min
with FTC reconfiguration. Note smaller deviation peak in T2 compared to no FTC implementation
in fig. 4.11
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Figure 4.15: Residual plots after initiating a flow actuator fault in tank 2 (F4) with fault tolerant
control.
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4.5 Conclusion

In this chapter, we focused on fault detection, isolation and fault tolerant control of an alkylation

with benzene process under distributed model predictive control in the presence of an unknown ac-

tuator fault. In order to achieve the objectives of closed-loop stability and optimal plant operation,

methods for quick fault detection and isolation were necessary such that the faults perturbation

had not yet pushed the plant state outside the reconfigured control system’s stability region. In ad-

dition accurate fault estimation and optimal recalculation of state and input targets was necessary

to maintain optimal plant operation in terms of cost. We demonstrated that FTC reconfiguration

benefits were most visible in the total operating cost, where controller action no longer wasted

energy by under- and over- compensating for an unresponsive and disruptive actuator.
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Chapter 5

Monitoring and Retuning of

Low-Level PID Control Loops

5.1 Introduction

In general, the calculation of the optimal input trajectories for the manipulated inputs via MPC,

the dynamics of the corresponding control actuators that will implement the control actions com-

puted by the MPC are neglected and the MPC-computed control actions are assumed to be directly

implemented by the control actuators. However, in practice, these control actuators have their own

specific dynamics. As a result of this, there are always discrepancies (i.e., time lags, magnitude

differences, etc.) between the actual control actions applied to the process by the control actuators

and the control actions requested by the MPC. To mitigate the influence of these discrepancies

in closed-loop performance, PID controllers (typically called “low-level” PID controllers) are usu-

ally implemented on the control actuators to regulate the outputs of the actuators at the values

requested by the MPC [2]. The representation of this added extra layer of the PID controllers

around the control actuators is shown in Fig. 5.1. In this case, the tuning of the PID controllers

is critical for the overall control actuator and closed-loop system performance. An actuator with a

well-tuned PID controller can effectively implement the actions requested by the MPC; whereas, an

actuator with a poorly-tuned PID controller may reduce the performance of the closed-loop system

dramatically or may even cause instability of the closed-loop system.

102



MPC
Low-level PID Control Actuator Processu  (t)m u (t)av(t)

-
u (t)a

x(t)

+ x

Figure 5.1: Closed-loop system with MPC as advanced model-based controller and low-level PID
controller implemented to regulate the control actuators.

Monitoring the performance of low-level PID loops provides the motivation for this work. With

respect to previous works on the subject, there is indeed a plethora of techniques discussed in the

literature on monitoring of the performance and tuning of PID controller parameters. With respect

to tuning, methods such as Ziegler-Nichols [59], Cohen-Coon [9], internal model control [46], pole

placement [54], and others have been widely used to tune PID controller parameters based on either

the estimated plant’s transfer function or experimentally-obtained step response and/or frequency

response curves. Gain scheduling [43, 58] has also been developed to allow PID controllers to be

able to self-tune to accommodate changing operating conditions. Multiple works have also been

published on automatic retuning of PID parameters based on the current performance of the PID

controller and on-line system identification [48, 4, 49]. On the monitoring front, [13] and [39] provide

a survey of available monitoring techniques. Specifically, minimum variance control [17] has been

developed as a tool to assess PID performance, while [51], and [50] utilize statistical process control

(SPC) to monitor and provide performance criteria to assess the performance of PID controllers.

In another work [45], a monitoring scheme was proposed to determine poor tuning/faults using

principal component analysis (PCA) and neural networks. One common feature in all of the works

in the PID monitoring field mentioned above is the assumption that measurements of the output of

the PID-controlled loop are available, this leaves isolation as a trivial exercise as the badly tuned

actuator response can be easily discerned from the expected response.

Motivated by the above considerations, we address the problem of real-time monitoring and

retuning of low-level PID controllers in the case where the measurement of the actual control action

implemented on the process is unavailable. Specifically, we present a method for monitoring the PID

performance via a model-based FDI method [32, 34] coupled with real-time process measurements.
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Using an estimated transfer function model of the control actuators, model-based FDI can be

used to detect the discrepancies between the expected actuation level and the actual actuation

level performed by the control actuators. Based on the patterns of the residuals, a poorly-tuned

actuator can be isolated and retuned accordingly. An example of a nonlinear reactor-separator

process under MPC control with low-level PID controllers around the control actuators is used to

demonstrate the approach.

5.2 Preliminaries

5.2.1 Class of Nonlinear Systems

In this work, we consider non-linear process systems with constraints on the inputs described by

the following state-space model:

ẋ(t) = f(x(t)) +G(x(t))ua(t) + w(t) (5.1)

where x(t) ∈ Rnx is an nx-element column vector representing nx states of the system, ua(t) ∈ U ⊆

Rmu is an mu-element column vector representing mu inputs to the system, and w(t) ∈ W ⊆ Rnx

is an nx-element column vector representing the process noise to the system. U is a convex set, f(·)

is a non-linear sufficiently smooth vector function, and G(·) is a nx × mu matrix whose elements

are sufficiently smooth functions that relate the jth input to the ith state with 1 ≤ j ≤ mu and

1 ≤ i ≤ nx. Without loss of generality, x = 0 is assumed to be the equilibrium of the unforced

system, i.e., ẋ(t) = 0 when x = 0, ua = 0, and w = 0. The operator | · | is used to denote the

absolute value of a scalar. The operator || · || is used to denote Euclidean norm of a vector.

Since the central focus of this work is on the difference between the requested actuation com-

puted by the model-based controller and the actual actuation level applied to the process by the

control actuators, we shall distinguish the two elements by calling the requested actuation um(t)

and the actual actuation ua(t).
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5.2.2 Lyapunov-based MPC

The model-based controller that is used to determine the set-points for each actuator is a Lyapunov-

based Model Predictive Controller (LMPC) [31]. One assumption about the design of the model-

based control system used in this work is that it does not explicitly account for the dynamics of the

control actuators and the presence of the process noise. Therefore, the model used for the design

of the model-based control system assumes the following dynamics for the process:

˙̃x(t) = f(x̃(t)) +G(x̃(t))um(t) (5.2)

where um is the commanded actuation by the high-level MPC. We make the following assumptions

regarding the stability of the closed-loop system. We assume that there exists a Lyapunov-based

controller h(x̃) such that the origin of the nominal closed-loop system under this controller, i.e., sys-

tem of Eq. 5.2 with um(t) = h(x̃) ∀t, is asymptotically stable. Using converse Lyapunov theorems,

this implies that there exist class K functions∗ αi(·), i = 1, 2, 3, 4 and a continuously differentiable

Lyapunov function V (x̃) for the nominal closed-loop system that satisfy the following inequalities:

α1(||x̃||) ≤ V (x̃) ≤ α2(||x̃||),
∣∣∣∣∣∣∣∣∂V (x̃)

∂x

∣∣∣∣∣∣∣∣ ≤ α3(||x̃||) (5.3a)

∂V (x̃)

∂x
(f(x̃) +G(x̃)h(x̃)) ≤ −α4(||x̃||) (5.3b)

for all x̃ ∈ D ⊆ Rnx where D is an open neighborhood of the origin. We denote the region

Ωρ
† ⊆ D as the stability region of the nominal closed-loop system, i.e., Eq. 5.2, under the control

um(t) = h(x̃).

The existence of the controller h(x̃) allows us to formulate an MPC that inherits the stability

∗A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0.
†We use Ωρ to denote the set Ωρ := {x ∈ Rnx |V (x) ≤ ρ}.
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properties of h(x̃) [31], and it is described by the following optimization problem:

min
uc∈S(∆)

∫ Nc∆

0
[x̂T (τ)Qx̂(τ) + uTc (τ)Ruc(τ)]dτ (5.4a)

˙̂x(τ) = f(x̂(τ)) +G(x̂(τ))uc(τ) (5.4b)

x̂(0) = x(tk) (5.4c)

uc(τ) ∈ U (5.4d)

∂V (x(tk))

∂x
G(x(tk))uc(0) ≤

∂V (x(tk))

∂x
G(x(tk))h(x(tk)) (5.4e)

where S(∆) is the family of piece-wise constant functions with sampling period ∆, Q and R are

strictly positive definite symmetric weighting matrices, x(tk) is the process state measurement

obtained at tk, x̂ is the predicted trajectory of the system under the MPC, Nc is the number of

steps in the prediction horizon, and V is the Lyapunov function corresponding to the controller

h(x̃).

The optimal solution to this optimization problem is denoted by u∗c(τ |tk). The LMPC is imple-

mented following a receding horizon strategy; at each sampling time tk, a new state measurement

x(tk) is received from the sensors and the optimization problem of Eq. 5.4 is solved, and u∗c(0|tk)

is sent to the actuators and it is implemented for t ∈ [tk, tk+1].

The constraint of Eq. 5.4e guarantees that the value of the time derivative of the Lyapunov

function at the initial evaluation time of the LMPC is less than or equal to the value obtained if

only the Lyapunov-based control um = h(x̃) is implemented. This constraint allows the LMPC to

inherit the stability properties of the Lyapunov-based control h(x̃) for sufficiently small sampling

period ∆; in particular, practical stability of the closed-loop system can be proven for sufficiently

small ∆. For detailed results on Lyapunov-based MPC, please see [31].

Remark 5.1. Note that in the design of the LMPC of Eq. 5.4 and its closed-loop stability analysis,

one assumption is that the requested actuation um(t) is applied directly to the process by the control

actuators. In a practical setting, however, um(t) has to go through the dynamics of the PID-

controlled actuators before the system is actuated with ua(t). The central focus of this work is on

how to bring ua(t) to be as close as possible to um(t). The relationship between ua(t) and um(t)

will be discussed in detail in the next section.
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Remark 5.2. Though a Lyapunov-based MPC is used as the model-based control system to demon-

strate how the problem of low-level PID monitoring and retuning based on process state measure-

ments can be approached, the monitoring and retuning methods presented here can be applied to any

type of model-based control system (i.e., geometric control, distributed MPC [25], etc.). Specifically,

as long as the requested actuation level um(t) and the process state measurements are available to

the monitoring and retuning system at all times, the same method presented in this work can be

applied to detect the deviation of the actual actuation level ua(t) from the requested actuation level

um(t).

5.2.3 Low-level PID Loops

As depicted in Fig. 5.1, um(t) is sent from the model-based controller as the set-point to the

control actuators. PID controllers are installed around these control actuators to help accelerate

the actuator’s response so that ua(t) can approach the value of um(t) faster. Eq. 5.5 below shows

the relationship between um and ua in the Laplace domain:

ua(s) =
GpGc

1 +GpGc
um(s) (5.5)

where Gp is the actuator’s transfer function and Gc is the PID controller’s transfer function. Gc

contains 3 parameters: Kc (proportional gain), τI (integral time constant), and τD (derivative time

constant) and takes the following form:

Gc = Kc(1 +
1

τIs
+ τDs) (5.6)

The transfer function of the actuator’s dynamics, Gp, on the other hand, can be approximated as

a first-order transfer function with dead time G′
p as follows:

G′
p = Kp

e−τds

τps+ 1
(5.7)

where Kp is the actuator’s gain, τd is the actuator dead time, and τp is the actuator’s time constant.

The estimation of the actuator’s transfer function (G′
p) will be needed by the FDI algorithm

below when the actuator’s expected behavior is calculated and also at the retuning step when a
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new set of PID parameters is calculated. The expected actuation level (denoted by u′a(t)) will be

used as the benchmark upper limit of how well the control actuators can perform.

5.3 Monitoring and Retuning of Low-Level PID Loops

We consider the case where there is no access by the monitoring system to the measurements of

the actual actuation levels ua(t) implemented by the control actuators on the process. Therefore,

the detection of poor PID tunings must be performed based on the measurements of the states of

the process. To this end, an FDI method is used as the main tool to extract actuator behavior

from the process state measurements [6]. We use exponentially-weighted-moving-average (EWMA)

residuals to detect and isolate poorly-tuned PID loops. Once a poorly-tuned actuator is isolated,

a model-based tuning rule such as Cohen-Coon or internal model control is applied to the PID

controller that regulates the poorly-tuned actuator.

The residuals are constructed from the difference between the expected behavior and the actual

behavior of the plant. This is done by comparing the evolution of the actual system obtained from

the state measurements against the evolution of the ideal filtered states based on the plant model.

The actual closed-loop system state (x(t)) evolves in the following manner:

ẋ(t) = f(x(t)) +G(x(t))ua(t) + w(t)

ua(s) =
GpGc

1 +GpGc
um(s)

(5.8)

where um(t) is the control action computed by the MPC and ua(t) is the actual actuation performed

by the actuators. The filter state (x̆(t)), on the other hand, evolves as follows:

˙̆xi(t) = fi(x̂i(t)) +Gi(x̂i(t))u
′
a(t)

x̂i = [x1 · · · xi−1, x̆i, xi+1 · · · xnx ]
T

u′a(s) =
G′

pG
′
c

1 +G′
pG

′
c

um(s)

x̆(N∆m) = x(N∆m), ∀ N = 0, 1, 2...

(5.9)

where ∆m is the MPC sampling time; G′
p is the estimated transfer function matrix of the control
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actuators; G′
c is a well-tuned PID controller transfer function matrix based on the estimated model

of the actuator G′
p. This makes u′a(t) the expected actuation level of ua(t).

Using Eqs. 5.8 and 5.9, the real-time measurements of x(t) can be compared against the evolu-

tion of x̆(t). The residual, or the difference between xi(t) and x̆i(t) denoted by ri(t), is expressed

in the following manner:

ri(t) = |x̆i(t)− xi(t)| (5.10)

In the absence of noise and if G′
p = Gp, whenever the j

th element of ua deviates from its expected

behavior u′aj and the ith-row-jth-column element of the G(x) matrix is non-zero, the ith residual

(ri) would instantaneously become non-zero. In other words, ri is non-zero only when there is a

problem with the actuators that directly affect the ith state of the system (relative degree of 1)

[32, 34].

In practice however, model mismatch, process noise, and measurement noise are always present

to some degree. Therefore, in a practical setting, the residuals will be non-zero regardless of the

accuracy of the process model used in Eq. 5.9. Thus, before the model-based FDI method can be

used in practice, the effects of process and measurement noise levels must first be recorded from

fault-free closed-loop process operation data (with both the PID controllers and the MPC being

well-tuned). On the basis of these noisy closed-loop system states, the mean and the standard

deviation of the residuals are calculated and the thresholds are determined.

Occasional noise spikes can make the residuals exceed the thresholds for a brief period of time

even when the actuators are functioning well; this can lead to the common problem of false alarms.

To reduce the incidence of false alarms, we define a modified residual rE,i, i = 1, ..., nx, for each

residual ri, calculated at discrete time instants tk with tk = t0 + k∆r, k = 0, 1, 2, ... and ∆r being

the interval between two consecutive state measurements. The weighted residual is calculated using

an EWMA method as follows [6, 5]:

rE,i(tk) = λri(tk) + (1− λ)rE,i(tk−1) (5.11)

with rE,i(t0) = ri(t0) and the weighting factor λ ∈ (0, 1]. The parameter λ determines the rate at

which past data enters into the calculations of the weighted residual. When λ = 1, rE,i is equivalent
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rE,i

time

td

ΩE,i

Figure 5.2: Monitoring scheme of PID response behavior based on the EWMA residuals of the
process state. Poor tuning is declared after rE,i exceeds its threshold ΩE,i continuously for t = td.

to ri. The typical range of λ is between 0.2 and 0.5 depending on the desired level of sensitivity

[5, 6]. Lower values of λ make the rE(t) curve smoother as potential noise spikes will have a smaller

effect on the overall shape of the curve; i.e., instances of false alarm will be reduced. However, in

the event where an actual poor tuning occurs, it may be detected and isolated more slowly.

The threshold, denoted by ΩE,i, for fault detection is defined as follows:

ΩE,i = µi + ασi

√
λ

2− λ
(5.12)

where α is a threshold parameter determining how sensitive the FDI is; typical value of α is an

integer value between 1 and 5. The parameters µi and σi are the mean and the standard deviation of

the ith residual during normal operation. Once rE,i exceeds the threshold (ΩE,i) for a fixed amount

of time td (determined by the user), then poor tuning is declared in the actuator(s) directly affecting

the ith state and the retuning algorithm is activated. Figure 5.2 shows the schematic of how the

EWMA residuals are used to activate the PID retuning algorithm at the end of waiting time td.

Once a poorly-tuned actuator is isolated, a PID tuning method can be applied to the PID

controller based on the estimated transfer function of the actuator G′
p. To help ensure the stability
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of the retuning algorithm, we employ a stability constraint. Specifically, whenever retuning is

performed, the retuning algorithm makes sure that
G′

pGc

1+G′
pGc

contains only strictly negative poles. In

this work, we use Cohen-Coon and internal model control method to retune the PID parameters to

demonstrate the approach. If desired, other model-based tuning rules may be used as well. Please

see [46, 48] for other PID tuning methods.

Remark 5.3. One feature that should be noted is that the PID retuning will be initiated if the

magnitude of the residuals is above a certain threshold. This means that even if the difference

between uaj(t) and u′aj(t) is appreciable but the difference between x̆i(t) and xi(t) is smaller than

the threshold, the retuner will do nothing. This is a direct result of the fact that the real value of

ua(t) is unknown and has to be estimated from the trajectories of the process states. A scenario

like this can also happen when Gij(·) is small.

Remark 5.4. The isolability structure of the system is also critical to the use of the monitoring

algorithm proposed here. If the pattern of the residuals is not unique to an actuator (i.e., two

actuators have the same signature because they directly affect the same system states) then a poorly-

performing actuator cannot be isolated with high confidence, then all control actuators that may be

poorly tuned should be retuned.

Remark 5.5. In the design of the filter of Eq. 5.9, a well-tuned PID controller, G′
c, is assumed to

be known and is used to calculate the benchmark performance of the overall control system. In the

case that G′
c is not known, the control actuation commanded by the MPC, um, can be used directly

in the filter design (i.e., replace u′a by um in the filter). Once a poorly-tuned actuator is isolated,

retuning of the PID parameters should be carried out. Even in the case, G′
c is known, the retuning

is recommended to account for changes in operation conditions as well as control actuator wear and

tear over time.

5.4 Application to a Nonlinear Chemical Process Network

In this section, we apply the PID monitoring and retuning methodology presented in the previous

section to a three-vessel reactor-separator chemical process network example. More simulation

examples can be found in [22].
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The chemical process network example considered operates at an unstable steady-state whose

detailed description and modeling as well as a schematic can be found in [6]. Sensor and process

noise were added to the simulations.

We focus on the problem of monitoring and retuning of the PID controllers used to regulate

the three heat input control actuators to each of the vessels: Q1, Q2, Q3, at the values computed

by the MPC in each sampling time. In order to calculate the benchmark performance for each

actuator (u′a(s)) and a new set of PID parameters when PID retuning is needed, a first-order

approximation of the transfer function of the actuator (G′
p) must be computed. In this example, all

actuator dynamics are modeled with first-order transfer functions with time delay. All actuators

have the same time constant (τp) of 2.82 seconds and time delay (τd) of 3.60 seconds, resulting in

the following transfer function:

Gactuator =
e−3.60s

2.82s+ 1
(5.13)

The control action computed by the MPC is sent to the control actuators every ∆m = 0.01hr.

Thus, at every sampling time t = N∆m, N = 0, 1, 2..., the low-level PID controllers take the MPC

command (um(t)) as the set-point and drive the actual actuation level (ua(t)) to the set-point under

the following closed-loop dynamics:

ua(s) =
GpGc

1 +GpGc
um(s)

We choose the following parameters for PID monitoring and retuning. The EWMA parameter

λ is set to 0.2. The EWMA residual threshold parameter α is chosen to be 5. The waiting time for

fault isolation based on the EWMA residual is set to be td = 0.01hr.

For the actuators with the transfer function presented in Eq. 5.13, the PID parameters that

give the best closed-loop response were found to be the following:

K∗
c = 0.648, τ∗I = 5.94 s, τ∗D = 0.54s (5.14)

These parameters were used to calculateG′
c. The poles of

G′
pG

′
c

1+G′
pG

′
c
calculated with the parameters

above are found to be all negative. This, in conjunction with the approximate transfer function

112



0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

u m
(t

)

Control Action for Q
1
 (105 KJ/hr)

0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

u a(t
)

Time (hr)
Figure 5.3: Requested actuation level by the MPC (um(t)) and actual actuation level (ua(t)) when
PID retuning is not implemented.

(G′
p) of the actuators of Eq. 5.13, was then used to approximate the ideal actuation performance

(u′a(s)) of each control actuator.

In the following example, we will illustrate how PID monitoring and retuning are applied to the

system.

In this example, we start the process from the following initial condition: x(0) = 0.8xs where xs

is the operating steady-state. All the control actuators are properly tuned with the PID parameters

shown in Eq. 5.14. At time t = 0.45hr, we apply poor tuning to the PID controller for the actuator

Q1 with the following parameters:

Kc = 0.00909, τI = 11.9 s, τD = 0.655 s (5.15)

Figure 5.3 shows the comparison between the requested actuation level um(t) and the actual

actuation level ua(t) for Q1 if the monitoring and retuning system is inactive. The EWMA residuals

of the temperature in the 3 vessels are shown in Fig. 5.4.

With the monitoring system active, Fig. 5.5 shows the evolution of PID response ua(t) as it is
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Figure 5.4: Temperature residuals for the 3 vessels computed via EWMA when PID retuning is
not implemented. The dashed lines represent the EWMA residual thresholds ΩE,i.
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Figure 5.5: Requested actuation level by the MPC (um(t)) and actual actuation level (ua(t)) when
PID retuning is implemented.
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Figure 5.6: Temperature residuals for the 3 vessels computed via EWMA when PID retuning is
implemented. The dashed lines represent the EWMA residual thresholds ΩE,i.

retuned at t = 0.475hr. As shown in Fig. 5.6, at t = 0.465hr, rE,T1 exceeds its threshold ΩE,T1 . At

this point, the value of rE,T1 starts being monitored closely for td = 0.01hr. By the time the system

reaches t = 0.475hr, the value of rE,T1 is found to have been above its threshold ΩE,T1 for the entire

duration from t = 0.465hr to t = 0.475hr. Because the process state T1 is the only state directly

affected by the control actuator Q1, given the model-based FDI filter design, any anomaly detected

in rE,T1 is the result of a problem with the Q1 control actuator. Therefore, the actuator Q1 can be

isolated with high confidence as the actuator with poor PID tuning. While other residuals (rE,T2

and rE,T3) occasionally exceed their thresholds at various time instances during the operation, they

do not exceed the thresholds for longer than td = 0.01hr. Thus, the monitoring system concludes

that their values exceed their thresholds solely due to process and measurement noise.

Once the Q1 control actuator is isolated as the poorly-tuned actuator, Cohen-Coon tuning

method is applied to the controller aroundQ1 based on the estimated transfer function of the control

actuator G′
p. The Cohen-Coon tuning rule is based on the first-order-plus-dead-time estimation

of the transfer function of the controlled process. Specifically, the Cohen-Coon tuning rule is as
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follows [9]:

Kc =
τp

Kpτd
(
4

3
+

τd
4τp

), τI = τd

32 + 6
τd
τp

13 + 8
τd
τp

,

τD = τd
4

11 + 2
τd
τp

(5.16)

where Kp is the actuator’s gain, τd is the actuator dead time, and τp is the actuator’s time constant.

With this tuning rule and the estimated transfer function of the actuator G′
p presented in Eq.5.13,

the resulting parameters for the PID of Q1 are as follows:

Kc = 1.29, τI = 6.15 s, τD = 1.06 s (5.17)

After Q1 is retuned, no more problem can be detected from the EWMA residuals of T1. In

terms of the actual control actuator performance, after being retuned with Cohen-Coon method,

ua(t) tracks um(t) quite well; please see Fig. 5.5.

5.5 Conclusion

In this chapter, we focused on the problem of monitoring and retuning of low-level PID control

loops used to regulate control actuators to the values computed by advanced model-based control

systems like MPC. Focusing on the case where the real-time measurement of the actuation level

is unavailable, we use process state measurements and process models to carry out PID controller

monitoring and compute appropriate residuals. Once a poorly-tuned PID controller is detected

and isolated, a PID tuning method based on the estimated transfer function of the control actuator

was applied to retune PID controller. The proposed method was applied to a nonlinear reactor-

separator process operating under MPC control with low-level PID controllers regulating the control

actuators and its performance was successfully evaluated via simulations.
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Chapter 6

Conclusions

The dissertation develops an integrated approach to monitoring and isolating actuator faults in a

nonlinear process system operating under a DMPC system. By taking advantage of both process

models and process measurements an FDIFTC system based on the system structure and structure

of potential faults can successfully and optimally recover from targeted actuator faults. In brief,

successful fault tolerant control requires that the actuator fault may be observed (i.e., the appropri-

ate states are monitored), secondly that the faults have an isolable structure, third that the control

system is structured as to maintain proper control through either identical redundant actuators or

a reconfigurable control scheme, and lastly that the FDIFTC system can operate sufficiently fast

to maintain stable operation.

In Chapter 2, we developed the initial approach for an FDIFTC system that does not rely on

an identical redundant actuator to maintain closed-loop stability. In that work, a more realistic

approach to fault tolerant control is imposed by requiring that only the remaining control action be

used to maintain closed-loop stability after isolation and resetting the actuator fault. Specifically

for detection and isolation, we first design fault detection filters and corresponding filter residuals to

effectively detect actuator faults. Considering that real measurement and process noise is present

in the plant, this requires a data-based approach to compliment the model-based filters to properly

detect a fault and again to confidently isolate a fault. Since successful FTC requires that a certain

minimum amount of control actions remain that can stabilize the system, we specifically address

these various situations.

117



In Chapter 3, we expand on the approach developed in Chapter 2 by addressing a more realistic

problem of not being able to reset a faulty actuator. By having a persistent fault present, there is

the possibility that the original operating point is no longer a viable option. In previous work by

resetting a fault, its effects were sufficiently nullified upon initiation of fault tolerant control that a

controllable structure insured successful reconfiguration. With the fault now being persistent, the

plant continues to deviate away from the target operating point and possibly outside the control

system’s stability region, such that quick detection and isolation are critical for successful FTC.

Then, we proposed a fault isolation approach which uses adaptive fault isolation time windows to

quickly and accurately isolate actuator faults and reduce the probability of false alarms. Subse-

quently, we designed appropriate FTC strategies to handle the actuator faults by reconfiguring the

DMPC system and maintaining the closed-loop system state within a desired operating region. The

applicability and effectiveness of the proposed approach were illustrated via extensive simulations

based on a nonlinear reactor-separator process example.

In Chapter 4, the methods developed in previous chapters were applied to the Catalytic Alkyla-

tion of Benzene Process to demonstrate the FDIFTC system’s effectiveness in a real-world setting.

Similarly Chapter 5, introduces a low-level PID layer to more realistically reflect industry prac-

tices of interfacing MPC with PIDs directly controlling actuators with the goal of monitoring and

retuning a poorly tuned low-level PID control loops using methods from Chapters 2 and 3.
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